metadata
base_model:
- openai/whisper-small
Note: This classifier also contains fine-tuned whisper-small
weights in its state dict. It will be properly loaded by my model wrapper.
Result of the classifier Rob's human-annotated dataset (data/voicemail_human_eval.csv
):
Results for chunk size 1 seconds:
- Accuracy: 0.8080
- Precision: 0.9353
- Recall: 0.7692
- F1 Score: 0.8442
Results for chunk size 2 seconds:
- Accuracy: 0.8560
- Precision: 0.9650
- Recall: 0.8166
- F1 Score: 0.8846
Results for chunk size 5 seconds:
- Accuracy: 0.8640
- Precision: 0.9856
- Recall: 0.8107
- F1 Score: 0.8896
Results for chunk size 10 seconds:
- Accuracy: 0.8760
- Precision: 1.0000
- Recall: 0.8166
- F1 Score: 0.8990
Results for full audio samples:
- Accuracy: 0.8760
- Precision: 1.0000
- Recall: 0.8166
- F1 Score: 0.8990