metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- layoutlmv4
model-index:
- name: layoutlm_alltags
results: []
layoutlm_alltags
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the layoutlmv4 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0891
- Customer Address: {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82}
- Customer Name: {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12}
- Invoice Number: {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12}
- Tax Amount: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
- Total Amount: {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11}
- Vendor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12}
- Overall Precision: 0.7857
- Overall Recall: 0.8397
- Overall F1: 0.8118
- Overall Accuracy: 0.9801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Customer Address | Customer Name | Invoice Number | Tax Amount | Total Amount | Vendor Name | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8211 | 6.67 | 20 | 0.3797 | {'precision': 0.25316455696202533, 'recall': 0.24390243902439024, 'f1': 0.24844720496894412, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.2532 | 0.1527 | 0.1905 | 0.9050 |
0.3036 | 13.33 | 40 | 0.1941 | {'precision': 0.6448598130841121, 'recall': 0.8414634146341463, 'f1': 0.73015873015873, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 12} | 0.6555 | 0.5954 | 0.624 | 0.9493 |
0.1537 | 20.0 | 60 | 0.1153 | {'precision': 0.7157894736842105, 'recall': 0.8292682926829268, 'f1': 0.768361581920904, 'number': 82} | {'precision': 0.35714285714285715, 'recall': 0.4166666666666667, 'f1': 0.3846153846153846, 'number': 12} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | 0.7037 | 0.7252 | 0.7143 | 0.9663 |
0.0862 | 26.67 | 80 | 0.0953 | {'precision': 0.8, 'recall': 0.8292682926829268, 'f1': 0.8143712574850299, 'number': 82} | {'precision': 0.6, 'recall': 0.75, 'f1': 0.6666666666666665, 'number': 12} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} | 0.7519 | 0.7634 | 0.7576 | 0.9757 |
0.0509 | 33.33 | 100 | 0.0846 | {'precision': 0.7857142857142857, 'recall': 0.8048780487804879, 'f1': 0.7951807228915663, 'number': 82} | {'precision': 0.7333333333333333, 'recall': 0.9166666666666666, 'f1': 0.8148148148148148, 'number': 12} | {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | 0.8030 | 0.8092 | 0.8061 | 0.9775 |
0.0354 | 40.0 | 120 | 0.0852 | {'precision': 0.7710843373493976, 'recall': 0.7804878048780488, 'f1': 0.7757575757575758, 'number': 82} | {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} | {'precision': 0.8, 'recall': 1.0, 'f1': 0.888888888888889, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | 0.7770 | 0.8244 | 0.8 | 0.9797 |
0.0297 | 46.67 | 140 | 0.0891 | {'precision': 0.7764705882352941, 'recall': 0.8048780487804879, 'f1': 0.7904191616766466, 'number': 82} | {'precision': 0.6666666666666666, 'recall': 0.8333333333333334, 'f1': 0.7407407407407408, 'number': 12} | {'precision': 0.8571428571428571, 'recall': 1.0, 'f1': 0.923076923076923, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.7142857142857143, 'recall': 0.9090909090909091, 'f1': 0.8, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | 0.7857 | 0.8397 | 0.8118 | 0.9801 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.2.0+cpu
- Datasets 2.12.0
- Tokenizers 0.13.2