fungiclef / script.py
chychiu's picture
got out of testing environment lol
010e451
raw
history blame
3.36 kB
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
from typing import List
def is_gpu_available():
"""Check if the python package `onnxruntime-gpu` is installed."""
return torch.cuda.is_available()
WIDTH = 224
HEIGHT = 224
MODEL_PATH = "metaformer-s-224.pth"
MODEL_NAME = "caformer_s18.sail_in22k"
class PytorchWorker:
"""Run inference using ONNX runtime."""
def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):
def _load_model(model_name, model_path):
print("Setting up Pytorch Model")
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using devide: {self.device}")
model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)
weights = torch.load(model_path, map_location=self.device)
model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()})
return model.to(self.device).eval()
self.model = _load_model(model_name, model_path)
self.transforms = T.Compose([T.Resize((HEIGHT, WIDTH)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
def predict_image(self, image: np.ndarray) -> List:
"""Run inference using ONNX runtime.
:param image: Input image as numpy array.
:return: A list with logits and confidences.
"""
logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
return logits.tolist()
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
"""Make submission with given """
model = PytorchWorker(model_path, model_name)
predictions = []
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
image_path = os.path.join(images_root_path, row.image_path.replace("jpg", "JPG"))
test_image = Image.open(image_path).convert("RGB")
logits = model.predict_image(test_image)
predictions.append(np.argmax(logits))
test_metadata["class_id"] = predictions
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
for ix, row in user_pred_df.iterrows():
if row['class_id'] == 1604:
user_pred_df.loc[ix, 'class_id'] = -1
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
def test_submission():
metadata_file_path = "../trial_test.csv"
test_metadata = pd.read_csv(metadata_file_path)
make_submission(
test_metadata=test_metadata,
model_path=MODEL_PATH,
model_name=MODEL_NAME,
images_root_path="../data/DF_FULL/"
)
if __name__ == "__main__":
# test_submission()
import zipfile
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
zip_ref.extractall("/tmp/data")
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
test_metadata = pd.read_csv(metadata_file_path)
make_submission(
test_metadata=test_metadata,
model_path=MODEL_PATH,
model_name=MODEL_NAME
)