ImageReward
ImageReward is the first general-purpose text-to-image human preference RM which is trained on in total 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. We demonstrate that ImageReward outperforms existing text-image scoring methods, such as CLIP, Aesthetic, and BLIP, in terms of understanding human preference in text-to-image synthesis through extensive analysis and experiments.
Approach
Setup
- Environment: install dependencies via
pip install -r requirements.txt
.
Usage
import os
import torch
import ImageReward as reward
if __name__ == "__main__":
prompt = "a painting of an ocean with clouds and birds, day time, low depth field effect"
img_prefix = "assets/images"
generations = [f"{pic_id}.webp" for pic_id in range(1, 5)]
img_list = [os.path.join(img_prefix, img) for img in generations]
model = reward.load()
with torch.no_grad():
ranking, rewards = model.inference_rank(prompt, img_list)
# Print the result
print("\nPreference predictions:\n")
print(f"ranking = {ranking}")
print(f"rewards = {rewards}")
for index in range(len(img_list)):
score = model.score(prompt, img_list[index])
print(f"{generations[index]:>16s}: {score:.2f}")
The output will look like the following (the exact numbers may be slightly different depending on the compute device):
Preference predictions:
ranking = [1, 2, 3, 4]
rewards = [[0.5811622738838196], [0.2745276093482971], [-1.4131819009780884], [-2.029569625854492]]
1.webp: 0.58
2.webp: 0.27
3.webp: -1.41
4.webp: -2.03
Test
Setup for baselines
Environment
$ pip install git+https://github.com/openai/CLIP.git
Checkpoint
Models | File Paths | Download Links |
---|---|---|
ImageReward | checkpoint/ | Download |
CLIP Score | checkpoint/clip/ | Download |
BLIP Score | checkpoint/blip/ | Download |
Aesthetic | checkpoint/aesthetic/ | Download |
Data
Data | File Paths | Download Links |
---|---|---|
test_images | data/ | Download |
Download test_images.zip
and unzip it to data/test_images/
One step for test
$ python test.py
The test result is:
Models | Preference Acc. |
---|---|
CLIP Score | 54.82 |
Aesthetic Score | 57.35 |
BLIP Score | 57.76 |
ImageReward (Ours) | 65.14 |