Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -10,17 +10,18 @@ library_name: transformers
10
  pipeline_tag: video-text-to-text
11
  ---
12
 
13
- [📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model (VideoScore)](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Model (VideoScore-anno-only)](https://huggingface.co/TIGER-Lab/VideoScore-anno-only) | [🤗Model (VideoScore-v1.1)](https://huggingface.co/TIGER-Lab/VideoScore-v1.1)| [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore)
14
 
15
 
16
  ![VideoScore](https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png)
17
 
18
  ## Introduction
19
- - 🤯🤯Try on the new version [VideoScore-v1.1](https://huggingface.co/TIGER-Lab/VideoScore-v1.1), a variant from [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) with better performance in **"text-to-video alignment"** subscore and the support for **48 frames** in inference now!
 
20
 
21
- - [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) series is a video quality evaluation model series, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base-model
22
  and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
23
- a large video evaluation dataset with multi-aspect human scores.
24
 
25
  - Following VideoScore, VideoScore-v1.1 can also reach about 75 Spearman correlation with humans on VideoFeedback-test, surpassing all the MLLM-prompting methods and feature-based metrics.
26
  VideoScore-v1.1 also beat the best baselines on other two benchmarks GenAI-Bench and VBench, showing high alignment with human evaluations.
 
10
  pipeline_tag: video-text-to-text
11
  ---
12
 
13
+ [📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model (VideoScore)](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore)
14
 
15
 
16
  ![VideoScore](https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png)
17
 
18
  ## Introduction
19
+ - 🤯🤯Try on the new version [VideoScore-v1.1](https://huggingface.co/TIGER-Lab/VideoScore-v1.1), a variant from [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) with better performance in **"text-to-video alignment"** subscore and the support for **48 frames** in inference now! It takes [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) as base model,
20
+ and is trained on trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) dataset.
21
 
22
+ - [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) series is a video quality evaluation model series, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) or [Qwen/Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) as base-model
23
  and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
24
+ a large video evaluation dataset with multi-aspect human scores.
25
 
26
  - Following VideoScore, VideoScore-v1.1 can also reach about 75 Spearman correlation with humans on VideoFeedback-test, surpassing all the MLLM-prompting methods and feature-based metrics.
27
  VideoScore-v1.1 also beat the best baselines on other two benchmarks GenAI-Bench and VBench, showing high alignment with human evaluations.