SentenceTransformer

This model aims at encoding text information from deviations Titles and/or Deviation Description (Event) for various Takeda site.

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Emergency Door in Staircase Room 1044 for Post-Viral Found Not Completely Closed',
    'On 02Jul2023, Manufacturing Supervisor (EID 50251544) was informed that Post-Viral Exit Door in Grade C Staircase leading to uncontrolled space, was found opened . Additionally, on 04Jul2023, Manufacturing Supervisor (50251544) was that the same door in Room 1044 was found opened . Per TOOL-216083, "Global Job Aid, Takeda Glossary (Reference Only)" (Version, Effective Date: 20Jun2022, a deviation is a departure from an established process, system, procedure,, regulatory filing, Health Authority requirement, specification, tolerance, trend, or other conformance requirement that may have GXP impact . This deviation occurred in Building 5 Fractionation.',
    'Deviation in DeltaV Recording During Wash Step of LA23G014 Elution Process',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 25,103 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 4 tokens
    • mean: 66.28 tokens
    • max: 512 tokens
    • min: 5 tokens
    • mean: 72.37 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    MFGR-0008591 Step 15.1/15.2 no On 01NOV2022 at 2120 in room 1044, Manufacturing Associate ME1 discovered prompt for Connection to VP-5020 not appear at step 15.1 of MFGR-0008591 v1.0, VED-D, Capto Adhere Blank Chromatography Material 6254681, 12376356, Process Order 221191021 . Process Engineer NS was contacted and verified with Automation Engineer EDS that recipe does require prompt Connect to VP-5020 (step 15.1), Connect 5020 5011 (Step and Ready to Load into XX-XX (step 15.2). Quality CY and Quality Assurance Lead SSH were contacted gave approval to . On 02NOV2022 in room 1044, Manufacturing Associate ARF discovered prompt Connect Collection to VP-5231 did not appear at step 15.1 MFGR-0008592 v1.0, VED-D, Nuvia HR-S Blank Chromatography Material 6254682, 12376361, Process Order 221191023 . Manufacturing Supervisor D1A and Manufacturing Specialist JN were and instructed ARF to the prompt Connect Collection to VP-5231 and proceed with processing It was prompt to Load into XV-XX at step 15.2 also did not appear JN gave approval to proceed with processing.
    BE22D002Z - Ligne de transfert TP2110-TP2140 en statut sale expir Ce dimanche 15/01/2023 18h50, Guillaume Deschuyteneer technicien Senior de production Glassia) a cr un work order EBM pour effectuer le CIP de dbut de de transfert line 2110-2140 (WO EBM: CIPG010048 pour la production du lot BE22D002Z . EBM alors spcifi Guillaume que le statut sanitaire de la line 2110-2140 tait en "sale expir". Guillaume a alors sa Cline Brunin (Contrematre de production Glassia) pour l'en informer.
    Donne manquante initiale Glose l'chantillons SMA aprs capsulage du lot LE13X075 - LI PR215117 Initial Missing Data: agar observed on SMA after CAPPING batch LE13X075 - LI PR2151179
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 50
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 50
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.3187 500 1.0372
0.6373 1000 0.3844
0.6667 1046 -
0.9560 1500 0.2836
1.0 1569 -
1.2747 2000 0.2401
1.3333 2092 -
1.5934 2500 0.1983
1.9120 3000 0.1513
2.0 3138 -
2.2307 3500 0.1278
2.5494 4000 0.1001
2.6667 4184 -
2.8681 4500 0.0801
3.0 4707 -
3.1867 5000 0.0707
3.3333 5230 -
3.5054 5500 0.0479
3.8241 6000 0.0425
4.0 6276 -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.0
  • Transformers: 4.45.0.dev0
  • PyTorch: 2.4.1
  • Accelerate: 0.26.1
  • Datasets: 2.16.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
23
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.