metadata
tags:
- spacy
- token-classification
- text-classification
language:
- en
model-index:
- name: en_tako_query_analyzer
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7170177384
- name: NER Recall
type: recall
value: 0.7172165234
- name: NER F Score
type: f_score
value: 0.7171171171
Feature | Description |
---|---|
Name | en_tako_query_analyzer |
Version | 0.0.1 |
spaCy | >=3.7.5,<3.8.0 |
Default Pipeline | tok2vec , ner , textcat |
Components | tok2vec , ner , textcat |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (33 labels for 2 components)
Component | Labels |
---|---|
ner |
CARDINAL , CUSTOM_ATTRIBUTE , CUSTOM_SEMANTIC_FUNCTION , CUSTOM_SPORTS_CONFERENCE , CUSTOM_SPORTS_LEAGUE , CUSTOM_SPORTS_ROLE , CUSTOM_STOCK_TICKER , CUSTOM_TEAM , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
textcat |
Business and Finance , Arts, Culture, and Entertainment , Crime , Sports , Politics , Science and Technology , Health and Wellness , Lifestyle and Fashion |
Accuracy
Type | Score |
---|---|
ENTS_F |
71.71 |
ENTS_P |
71.70 |
ENTS_R |
71.72 |
CATS_SCORE |
70.53 |
CATS_MICRO_P |
85.89 |
CATS_MICRO_R |
85.89 |
CATS_MICRO_F |
85.89 |
CATS_MACRO_P |
74.89 |
CATS_MACRO_R |
67.56 |
CATS_MACRO_F |
70.53 |
CATS_MACRO_AUC |
93.04 |
TOK2VEC_LOSS |
61786.52 |
NER_LOSS |
46852.50 |
TEXTCAT_LOSS |
1.09 |