File size: 8,053 Bytes
6814961
 
3bead65
 
 
 
7eaae52
3bead65
 
 
6814961
 
5a6ce06
5827056
2ab3710
6814961
 
 
2ab3710
3bead65
 
1109e5b
5827056
6814961
 
 
3bead65
6814961
3bead65
6814961
3bead65
6814961
85b6493
 
 
6814961
 
 
5827056
85b6493
40bcaaf
6814961
5827056
6814961
 
a74efb0
a011ae9
a74efb0
 
 
 
 
 
 
 
 
6814961
a74efb0
 
 
 
 
 
 
 
e2a7e86
7eaae52
6814961
44201ee
 
6814961
b67b098
 
6814961
 
44201ee
6814961
 
 
 
 
 
 
a011ae9
 
 
 
 
 
 
 
 
 
 
 
7eaae52
6814961
 
 
 
7eaae52
6814961
 
 
7eaae52
6814961
 
 
 
 
a74efb0
6814961
7eaae52
6814961
 
 
a74efb0
6814961
7eaae52
6814961
 
 
a74efb0
6814961
7eaae52
6814961
 
 
 
 
 
 
 
 
 
 
a74efb0
6814961
7eaae52
6814961
7eaae52
6814961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eaae52
6814961
 
 
 
 
 
 
 
 
 
 
7eaae52
6814961
 
 
 
 
 
 
 
 
 
 
b67b098
 
 
44201ee
b67b098
 
 
 
 
 
 
 
 
 
 
 
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
44201ee
 
 
 
 
b67b098
 
 
44201ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
library_name: transformers
tags:
- llm
- llama3
- rare disease
license: llama3
language:
- en
pipeline_tag: text-generation
---

## Model Details
 ReidLM is a fine-tuned version of Meta's LLaMA 3 model, specifically optimized for generating high-quality, contextually accurate responses in the domain of rare diseases. <br>
 Utilizing the Evol-Instruct methodology, this model was fine-tuned with a dataset of over 400 rare diseases.

### Model Description

- **Developed by:** MSRIT Students
- **Model type:** Transformer-based Large Language Model (LLM)
- **Language(s) (NLP):** English
- **License:** Llama 3 Community License Agreement
- **Finetuned from model:** Meta-Llama-3-8B-Instruct

## Uses

ReidLM is designed for direct use in generating insightful and reliable information to support healthcare professionals and researchers in diagnosing and managing rare diseases. It can be used as an educational tool for training medical students and professionals about rare diseases.

### Out-of-Scope Use

ReidLM is specifically designed for generating information related to rare diseases and should not be used for the following purposes:

- **Non-Medical Domains:** ReidLM is optimized for rare disease information and may not perform well in other domains such as finance, law, general health conditions, or any other non-medical fields.<br>
- **General Conversational AI:**  While capable of generating detailed information on rare diseases, ReidLM may not be suitable for general conversational AI tasks that require a broad understanding of various topics. <br>


## Bias, Risks, and Limitations

ReidLM, like all large language models, has inherent biases and limitations that users should be aware of:<br>
- **Ethical Concerns:** There is a risk of over-reliance on AI for medical decisions, which should always be validated by healthcare professionals.<br>
- **Accuracy:** While the model strives for accuracy, it may generate incorrect or incomplete information, especially in highly specialized or novel cases.

## Getting Started with the Model

Use the code below to get started with the model.
## Use with Transformers AutoModelForCausalLM

```
import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the pre-trained model and tokenizer
model_name = "Tanvi03/ReidLM"  
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def generate_text(prompt, max_length=1000):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(inputs.input_ids, max_length=max_length, num_return_sequences=1)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

prompt = "Explain MEN-1 with respect to how it affects the pituitary gland. What is the other name for this syndrome?"
generated_text = generate_text(prompt)
print(generated_text)
```



<!--## Training Details -->
### Training Data
This link provides the Evol-Instruct question-and-answer dataset
https://raw.githubusercontent.com/M-e-e-n-a/Synthetic-Dataset-Creation/main/combined_dataset.json
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

<!--### Training Procedure -->

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->



#### Training Hyperparameters

  num_train_epochs=3, <br>
  per_device_train_batch_size=4,<br>
  gradient_accumulation_steps=2,<br>
  optim="paged_adamw_8bit",<br>
  save_steps=1000,<br>
  logging_steps=30,<br>
  learning_rate=2e-4,<br>
  weight_decay=0.01,<br>
  fp16=True,<br>
  max_grad_norm=1.0,<br>
  warmup_ratio=0.1<br>
  <!-- -->
<!---#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->


<!---## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

<!---### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

<!--[More Information Needed] --->

<!---#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

<!--[More Information Needed]

<!---#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

<!--[More Information Needed]

<!---### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

<!--[More Information Needed]

<!---## Environmental Impact

Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly 

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

<!---**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

<!---[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]--->
## Results

## Evaluation Metrics

<table>
  <thead>
    <tr>
      <th>Metrics</th>
      <th>Llama-2-7b</th>
      <th>Mistral-7b</th>
      <th>Mixtral-47B</th>
      <th>ReidLM</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td align="center">ROUGE-1</td>
      <td align="center">0.3117</td>
      <td align="center">0.3188</td>
      <td align="center">0.2637</td>
      <td align="center">0.3281</td>
    </tr>
    <tr>
      <td align="center">ROUGE-2</td>
      <td align="center">0.1867</td>
      <td align="center">0.1176</td>
      <td align="center">0.1573</td>
      <td align="center">0.1270</td>
    </tr>
    <tr>
      <td align="center">ROUGE-L</td>
      <td align="center">0.1818</td>
      <td align="center">0.1449</td>
      <td align="center">0.2637</td>
      <td align="center">0.2031</td>
    </tr>
    <tr>
      <td align="center">ROUGE-LSUM</td>
      <td align="center">0.1818</td>
      <td align="center">0.1449</td>
      <td align="center">0.2637</td>
      <td align="center">0.2031</td>
    </tr>
    <tr>
      <td align="center">METEOR</td>
      <td align="center">0.0693</td>
      <td align="center">0.3088</td>
      <td align="center">0.4377</td>
      <td align="center">0.3662</td>
    </tr>
    <tr>
      <td align="center">BERTScore</td>
      <td align="center">0.8262</td>
      <td align="center">0.8538</td>
      <td align="center">0.9070</td>
      <td align="center">0.8782</td>
    </tr>
    <tr>
      <td align="center">G-Eval</td>
      <td align="center">0.35</td>
      <td align="center">0.42</td>
      <td align="center">0.78</td>
      <td align="center">0.87</td>
    </tr>
    <tr>
      <td align="center">QAG Score</td>
      <td align="center">0.1046</td>
      <td align="center">0.2061</td>
      <td align="center">0.3762</td>
      <td align="center">0.2609</td>
    </tr>
  </tbody>
</table>