lilt-en-funsd / README.md
Tatiana239's picture
End of training
3615f8e
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7928
  • Answer: {'precision': 0.8716763005780347, 'recall': 0.9228886168910648, 'f1': 0.8965517241379309, 'number': 817}
  • Header: {'precision': 0.5648148148148148, 'recall': 0.5126050420168067, 'f1': 0.5374449339207047, 'number': 119}
  • Question: {'precision': 0.8945454545454545, 'recall': 0.9136490250696379, 'f1': 0.9039963252181902, 'number': 1077}
  • Overall Precision: 0.8678
  • Overall Recall: 0.8937
  • Overall F1: 0.8806
  • Overall Accuracy: 0.7985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4236 10.53 200 0.9583 {'precision': 0.8623962040332147, 'recall': 0.8898408812729498, 'f1': 0.8759036144578314, 'number': 817} {'precision': 0.5131578947368421, 'recall': 0.3277310924369748, 'f1': 0.39999999999999997, 'number': 119} {'precision': 0.8450704225352113, 'recall': 0.947075208913649, 'f1': 0.893169877408056, 'number': 1077} 0.8401 0.8872 0.8630 0.8016
0.0421 21.05 400 1.4064 {'precision': 0.8573113207547169, 'recall': 0.8898408812729498, 'f1': 0.8732732732732732, 'number': 817} {'precision': 0.4301675977653631, 'recall': 0.6470588235294118, 'f1': 0.5167785234899329, 'number': 119} {'precision': 0.8667883211678832, 'recall': 0.8820798514391829, 'f1': 0.87436723423838, 'number': 1077} 0.8262 0.8713 0.8482 0.7733
0.0121 31.58 600 1.5114 {'precision': 0.8534090909090909, 'recall': 0.9192166462668299, 'f1': 0.8850913376546846, 'number': 817} {'precision': 0.5930232558139535, 'recall': 0.42857142857142855, 'f1': 0.4975609756097561, 'number': 119} {'precision': 0.8824577025823687, 'recall': 0.9201485608170845, 'f1': 0.9009090909090909, 'number': 1077} 0.8583 0.8907 0.8742 0.8044
0.0058 42.11 800 1.4988 {'precision': 0.8361391694725028, 'recall': 0.9118727050183598, 'f1': 0.8723653395784543, 'number': 817} {'precision': 0.5203252032520326, 'recall': 0.5378151260504201, 'f1': 0.5289256198347108, 'number': 119} {'precision': 0.8798206278026905, 'recall': 0.9108635097493036, 'f1': 0.8950729927007299, 'number': 1077} 0.8408 0.8892 0.8643 0.7982
0.004 52.63 1000 1.5823 {'precision': 0.8455467869222097, 'recall': 0.9179926560587516, 'f1': 0.880281690140845, 'number': 817} {'precision': 0.5263157894736842, 'recall': 0.5042016806722689, 'f1': 0.5150214592274679, 'number': 119} {'precision': 0.867595818815331, 'recall': 0.924791086350975, 'f1': 0.8952808988764045, 'number': 1077} 0.8404 0.8972 0.8679 0.7996
0.0028 63.16 1200 1.6518 {'precision': 0.8492822966507177, 'recall': 0.8690330477356181, 'f1': 0.8590441621294616, 'number': 817} {'precision': 0.5855855855855856, 'recall': 0.5462184873949579, 'f1': 0.5652173913043478, 'number': 119} {'precision': 0.88, 'recall': 0.9192200557103064, 'f1': 0.899182561307902, 'number': 1077} 0.8518 0.8768 0.8641 0.7939
0.0013 73.68 1400 1.8819 {'precision': 0.8378672470076169, 'recall': 0.9424724602203183, 'f1': 0.8870967741935485, 'number': 817} {'precision': 0.6794871794871795, 'recall': 0.44537815126050423, 'f1': 0.5380710659898478, 'number': 119} {'precision': 0.9006622516556292, 'recall': 0.8839368616527391, 'f1': 0.8922211808809747, 'number': 1077} 0.8642 0.8818 0.8729 0.7931
0.0013 84.21 1600 1.8234 {'precision': 0.8519362186788155, 'recall': 0.9155446756425949, 'f1': 0.8825958702064898, 'number': 817} {'precision': 0.5585585585585585, 'recall': 0.5210084033613446, 'f1': 0.5391304347826087, 'number': 119} {'precision': 0.9120982986767486, 'recall': 0.8960074280408542, 'f1': 0.9039812646370023, 'number': 1077} 0.8671 0.8818 0.8744 0.7996
0.0008 94.74 1800 1.7898 {'precision': 0.844170403587444, 'recall': 0.9216646266829865, 'f1': 0.8812170860152135, 'number': 817} {'precision': 0.5294117647058824, 'recall': 0.5294117647058824, 'f1': 0.5294117647058824, 'number': 119} {'precision': 0.8756613756613757, 'recall': 0.9220055710306406, 'f1': 0.898236092265943, 'number': 1077} 0.8434 0.8987 0.8701 0.7901
0.0004 105.26 2000 1.8115 {'precision': 0.8396436525612472, 'recall': 0.9228886168910648, 'f1': 0.8793002915451895, 'number': 817} {'precision': 0.6063829787234043, 'recall': 0.4789915966386555, 'f1': 0.5352112676056338, 'number': 119} {'precision': 0.8909090909090909, 'recall': 0.9099350046425255, 'f1': 0.90032154340836, 'number': 1077} 0.8561 0.8897 0.8726 0.7939
0.0004 115.79 2200 1.7928 {'precision': 0.8716763005780347, 'recall': 0.9228886168910648, 'f1': 0.8965517241379309, 'number': 817} {'precision': 0.5648148148148148, 'recall': 0.5126050420168067, 'f1': 0.5374449339207047, 'number': 119} {'precision': 0.8945454545454545, 'recall': 0.9136490250696379, 'f1': 0.9039963252181902, 'number': 1077} 0.8678 0.8937 0.8806 0.7985
0.0003 126.32 2400 1.8271 {'precision': 0.863013698630137, 'recall': 0.9253365973072215, 'f1': 0.8930891907855877, 'number': 817} {'precision': 0.6105263157894737, 'recall': 0.48739495798319327, 'f1': 0.5420560747663552, 'number': 119} {'precision': 0.8935395814376706, 'recall': 0.9117920148560817, 'f1': 0.9025735294117648, 'number': 1077} 0.8676 0.8922 0.8797 0.7983

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1+cu102
  • Datasets 2.8.0
  • Tokenizers 0.13.1