metadata
language:
- en
license: apache-2.0
datasets:
- Open-Orca/SlimOrca
model-index:
- name: GALAXY_v03_slimorca_1_epoch_50k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.71
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.17
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.3
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY_v03_slimorca_1_epoch_50k
name: Open LLM Leaderboard
TeeZee/GALAXY-XB-v1.03
Experiment, can DUS be taken one or more steps further?
Technical notes:
- model v03 finetuned on 50k entries from SlimOrca dataset
- 12 layers removed from both models, 4 more than in original paper but its 1/4 of all layers(48) as per original paper.
- base version of upstage/SOLAR-10.7B-v1.0 used for merge
To evaluate
- model performance after finetuning, did it recover initial performance loss after merge?
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 57.04 |
AI2 Reasoning Challenge (25-Shot) | 62.71 |
HellaSwag (10-Shot) | 84.58 |
MMLU (5-Shot) | 65.17 |
TruthfulQA (0-shot) | 47.30 |
Winogrande (5-shot) | 82.48 |
GSM8k (5-shot) | 0.00 |