metadata
license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tsf-gs-rot-flip-wtoken-DRPT-r128-f198-4.4-h768-i3072-p32-b4-e60
results: []
tsf-gs-rot-flip-wtoken-DRPT-r128-f198-4.4-h768-i3072-p32-b4-e60
This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4736
- Accuracy: 0.7487
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 13020
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0904 | 0.0167 | 217 | 1.1132 | 0.3262 |
1.1105 | 1.0167 | 434 | 1.1408 | 0.3262 |
1.2079 | 2.0167 | 651 | 1.1040 | 0.3422 |
1.1561 | 3.0167 | 868 | 1.1015 | 0.3316 |
1.1399 | 4.0167 | 1085 | 1.1023 | 0.3262 |
1.1942 | 5.0167 | 1302 | 1.1053 | 0.3743 |
1.09 | 6.0167 | 1519 | 1.0816 | 0.3690 |
1.1052 | 7.0167 | 1736 | 1.1205 | 0.3369 |
0.9883 | 8.0167 | 1953 | 1.1582 | 0.3904 |
1.0268 | 9.0167 | 2170 | 0.9488 | 0.5775 |
0.8247 | 10.0167 | 2387 | 0.9106 | 0.6417 |
0.841 | 11.0167 | 2604 | 0.8541 | 0.6471 |
0.8026 | 12.0167 | 2821 | 0.7250 | 0.6898 |
0.942 | 13.0167 | 3038 | 0.7447 | 0.6578 |
0.7162 | 14.0167 | 3255 | 0.8518 | 0.6043 |
1.0489 | 15.0167 | 3472 | 0.9505 | 0.6096 |
0.8231 | 16.0167 | 3689 | 1.0083 | 0.5882 |
0.8702 | 17.0167 | 3906 | 0.7928 | 0.6684 |
0.5014 | 18.0167 | 4123 | 0.7290 | 0.7433 |
0.5914 | 19.0167 | 4340 | 0.6092 | 0.7701 |
0.6259 | 20.0167 | 4557 | 1.0359 | 0.7487 |
0.7433 | 21.0167 | 4774 | 1.0086 | 0.7326 |
0.2929 | 22.0167 | 4991 | 1.7072 | 0.6364 |
0.3763 | 23.0167 | 5208 | 0.9161 | 0.7487 |
0.4253 | 24.0167 | 5425 | 1.1377 | 0.7219 |
0.7882 | 25.0167 | 5642 | 1.2351 | 0.7059 |
0.5644 | 26.0167 | 5859 | 1.5853 | 0.6150 |
0.6372 | 27.0167 | 6076 | 0.8027 | 0.7540 |
0.3907 | 28.0167 | 6293 | 1.6891 | 0.6096 |
0.7374 | 29.0167 | 6510 | 1.2730 | 0.6791 |
0.6292 | 30.0167 | 6727 | 1.1093 | 0.7326 |
0.2892 | 31.0167 | 6944 | 1.2396 | 0.7219 |
0.6779 | 32.0167 | 7161 | 1.6986 | 0.6524 |
0.2337 | 33.0167 | 7378 | 1.7567 | 0.6898 |
0.3919 | 34.0167 | 7595 | 1.1040 | 0.7380 |
0.6117 | 35.0167 | 7812 | 1.0982 | 0.7701 |
0.5463 | 36.0167 | 8029 | 1.1052 | 0.7380 |
0.3559 | 37.0167 | 8246 | 1.6846 | 0.6578 |
0.3356 | 38.0167 | 8463 | 0.9712 | 0.7487 |
0.0266 | 39.0167 | 8680 | 1.7524 | 0.6684 |
0.3919 | 40.0167 | 8897 | 1.6011 | 0.7112 |
0.1367 | 41.0167 | 9114 | 1.1935 | 0.7433 |
0.1936 | 42.0167 | 9331 | 1.5143 | 0.7326 |
0.7236 | 43.0167 | 9548 | 1.1621 | 0.7861 |
0.5877 | 44.0167 | 9765 | 1.5272 | 0.7326 |
0.3265 | 45.0167 | 9982 | 1.2536 | 0.7754 |
0.4684 | 46.0167 | 10199 | 1.1489 | 0.7647 |
0.3436 | 47.0167 | 10416 | 1.3433 | 0.7701 |
0.0272 | 48.0167 | 10633 | 1.5171 | 0.7380 |
0.3487 | 49.0167 | 10850 | 1.1279 | 0.7647 |
0.024 | 50.0167 | 11067 | 1.6780 | 0.7273 |
0.4644 | 51.0167 | 11284 | 1.3860 | 0.7914 |
0.5177 | 52.0167 | 11501 | 1.7174 | 0.7219 |
0.263 | 53.0167 | 11718 | 1.4811 | 0.7326 |
0.3323 | 54.0167 | 11935 | 1.4279 | 0.7807 |
0.2919 | 55.0167 | 12152 | 1.4855 | 0.7166 |
0.1878 | 56.0167 | 12369 | 1.4966 | 0.7594 |
0.1307 | 57.0167 | 12586 | 1.3280 | 0.7594 |
0.4798 | 58.0167 | 12803 | 1.6149 | 0.7487 |
0.0599 | 59.0167 | 13020 | 1.3786 | 0.7540 |
Framework versions
- Transformers 4.41.2
- Pytorch 1.13.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1