tsf-newDS-DRPT-r224-f90-8.8-h768-i3072-p32-b8-e100

This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4780
  • Accuracy: 0.7478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 13100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1939 0.01 131 1.1309 0.3673
1.1355 1.01 262 1.1368 0.3230
1.0944 2.01 393 1.1001 0.3628
1.151 3.01 524 1.1368 0.3540
1.1259 4.01 655 1.1324 0.3230
1.1406 5.01 786 1.0984 0.3540
1.1126 6.01 917 1.0994 0.3540
1.1169 7.01 1048 1.1456 0.3230
1.1217 8.01 1179 1.1333 0.3230
1.1227 9.01 1310 1.1024 0.3230
1.1136 10.01 1441 1.1115 0.3540
1.0942 11.01 1572 1.0910 0.3142
1.1089 12.01 1703 1.0973 0.3540
1.1148 13.01 1834 1.1086 0.3496
1.1019 14.01 1965 1.0919 0.3540
1.1264 15.01 2096 1.1035 0.3540
1.1235 16.01 2227 1.0961 0.3540
1.1438 17.01 2358 1.0864 0.3584
1.1092 18.01 2489 1.0938 0.3319
1.111 19.01 2620 1.1190 0.3496
1.0871 20.01 2751 1.1039 0.3584
1.0632 21.01 2882 1.1465 0.3673
1.0743 22.01 3013 1.1446 0.3628
1.0811 23.01 3144 1.1103 0.3584
1.1378 24.01 3275 1.1192 0.3628
1.0274 25.01 3406 1.1488 0.3230
1.0446 26.01 3537 1.1257 0.3407
1.1225 27.01 3668 1.1199 0.3363
1.0504 28.01 3799 1.1628 0.3496
1.1138 29.01 3930 1.1905 0.3319
1.066 30.01 4061 1.1344 0.3407
1.0567 31.01 4192 1.1359 0.4027
1.011 32.01 4323 1.1819 0.3628
1.0595 33.01 4454 1.1846 0.3761
1.028 34.01 4585 1.2150 0.3717
1.045 35.01 4716 1.1456 0.3496
1.0459 36.01 4847 1.0731 0.4646
1.0581 37.01 4978 1.2463 0.4292
0.9436 38.01 5109 1.1388 0.4425
0.9794 39.01 5240 1.1613 0.4513
0.8882 40.01 5371 1.1544 0.4381
1.0316 41.01 5502 1.0461 0.4779
0.8349 42.01 5633 1.0396 0.5088
0.8478 43.01 5764 1.0630 0.5442
0.8072 44.01 5895 1.1215 0.5177
0.7213 45.01 6026 1.1616 0.6018
0.7108 46.01 6157 1.1122 0.6106
0.6225 47.01 6288 1.1400 0.6106
0.5557 48.01 6419 0.9576 0.6283
0.4944 49.01 6550 1.3350 0.5487
0.7068 50.01 6681 0.9125 0.6504
0.5947 51.01 6812 2.0044 0.4956
0.645 52.01 6943 1.1295 0.5796
0.4251 53.01 7074 1.7297 0.5
0.573 54.01 7205 0.9968 0.6372
0.4283 55.01 7336 1.1135 0.6195
0.6225 56.01 7467 0.8792 0.7212
0.3876 57.01 7598 1.3363 0.6150
0.4729 58.01 7729 1.2033 0.6460
0.4922 59.01 7860 1.0137 0.6593
0.3925 60.01 7991 1.5002 0.6106
0.4234 61.01 8122 1.3914 0.6018
0.3847 62.01 8253 1.2090 0.6460
0.3739 63.01 8384 1.1537 0.6549
0.4808 64.01 8515 1.0365 0.7124
0.2926 65.01 8646 1.2063 0.6814
0.5116 66.01 8777 0.9150 0.7301
0.34 67.01 8908 1.1562 0.6903
0.452 68.01 9039 1.2344 0.6947
0.2936 69.01 9170 2.3964 0.5088
0.3911 70.01 9301 1.4071 0.6327
0.19 71.01 9432 1.3819 0.6991
0.3191 72.01 9563 1.7279 0.6460
0.2172 73.01 9694 1.2274 0.7257
0.2871 74.01 9825 1.4077 0.6947
0.3536 75.01 9956 1.2094 0.7301
0.2616 76.01 10087 1.7737 0.6372
0.3808 77.01 10218 1.7553 0.6549
0.3956 78.01 10349 1.3767 0.7035
0.2217 79.01 10480 1.2784 0.7035
0.3449 80.01 10611 1.0742 0.7611
0.3193 81.01 10742 1.1135 0.7566
0.3241 82.01 10873 1.3711 0.7345
0.1948 83.01 11004 1.1718 0.7389
0.4882 84.01 11135 1.1333 0.7655
0.3604 85.01 11266 1.1587 0.7566
0.3536 86.01 11397 1.4604 0.6947
0.3896 87.01 11528 1.7899 0.6770
0.2398 88.01 11659 1.3172 0.7566
0.252 89.01 11790 1.7039 0.6858
0.1858 90.01 11921 2.2136 0.6195
0.2268 91.01 12052 1.4825 0.6991
0.2984 92.01 12183 1.5829 0.6858
0.1323 93.01 12314 1.5580 0.6947
0.3251 94.01 12445 1.4773 0.7522
0.1103 95.01 12576 1.7728 0.6460
0.2054 96.01 12707 1.6074 0.6681
0.2131 97.01 12838 1.9007 0.6770
0.0364 98.01 12969 1.5574 0.6947
0.1295 99.01 13100 1.4780 0.7478

Framework versions

  • Transformers 4.41.2
  • Pytorch 1.13.0+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
81.2M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Temo27Anas/tsf-newDS-DRPT-r224-f90-8.8-h768-i3072-p32-b8-e100

Finetuned
(49)
this model