|
--- |
|
license: apache-2.0 |
|
base_model: stabilityai/stable-diffusion-xl-base-1.0 |
|
tags: |
|
- art |
|
- t2i-adapter |
|
- image-to-image |
|
- stable-diffusion-xl-diffusers |
|
- stable-diffusion-xl |
|
--- |
|
|
|
# T2I-Adapter-SDXL - Depth-Zoe |
|
|
|
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint. |
|
|
|
This checkpoint provides conditioning on depth for the StableDiffusionXL checkpoint. This was a collaboration between **Tencent ARC** and [**Hugging Face**](https://huggingface.co/). |
|
|
|
## Model Details |
|
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models |
|
- **Model type:** Diffusion-based text-to-image generation model |
|
- **Language(s):** English |
|
- **License:** Apache 2.0 |
|
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453). |
|
- **Model complexity:** |
|
| | SD-V1.4/1.5 | SD-XL | T2I-Adapter | T2I-Adapter-SDXL | |
|
| --- | --- |--- |--- |--- | |
|
| Parameters | 860M | 2.6B |77 M | 77/79 M | | |
|
- **Cite as:** |
|
|
|
@misc{ |
|
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models}, |
|
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie}, |
|
year={2023}, |
|
eprint={2302.08453}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
|
|
### Checkpoints |
|
|
|
| Model Name | Control Image Overview| Control Image Example | Generated Image Example | |
|
|---|---|---|---| |
|
|[TencentARC/t2i-adapter-canny-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-canny-sdxl-1.0)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_canny.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_canny.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_canny.png"/></a>| |
|
|[TencentARC/t2i-adapter-sketch-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_sketch.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_sketch.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_sketch.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_sketch.png"/></a>| |
|
|[TencentARC/t2i-adapter-lineart-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-lineart-sdxl-1.0)<br/> *Trained with lineart edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_lin.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_lin.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_lin.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_lin.png"/></a>| |
|
|[TencentARC/t2i-adapter-depth-midas-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-depth-midas-sdxl-1.0)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"/></a>| |
|
|[TencentARC/t2i-adapter-depth-zoe-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-depth-zoe-sdxl-1.0)<br/> *Trained with Zoe depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"/></a>| |
|
|[TencentARC/t2i-adapter-openpose-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-openpose-sdxl-1.0)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"/></a>| |
|
|
|
|
|
## Example |
|
|
|
To get started, first install the required dependencies: |
|
|
|
```bash |
|
pip install git+https://github.com/huggingface/diffusers.git |
|
pip install -U controlnet_aux==0.0.7 timm==0.6.12 # for conditioning models and detectors |
|
pip install transformers accelerate safetensors |
|
``` |
|
|
|
1. Images are first downloaded into the appropriate *control image* format. |
|
2. The *control image* and *prompt* are passed to the [`StableDiffusionXLAdapterPipeline`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py#L125). |
|
|
|
Let's have a look at a simple example using the [Canny Adapter](https://huggingface.co/TencentARC/t2i-adapter-lineart-sdxl-1.0). |
|
|
|
- Dependency |
|
```py |
|
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL |
|
from diffusers.utils import load_image, make_image_grid |
|
from controlnet_aux import ZoeDetector |
|
import torch |
|
|
|
# load adapter |
|
adapter = T2IAdapter.from_pretrained( |
|
"TencentARC/t2i-adapter-depth-zoe-sdxl-1.0", torch_dtype=torch.float16, varient="fp16" |
|
).to("cuda") |
|
|
|
# load euler_a scheduler |
|
model_id = 'stabilityai/stable-diffusion-xl-base-1.0' |
|
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( |
|
model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16", |
|
).to("cuda") |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
zoe_depth = ZoeDetector.from_pretrained( |
|
"valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk" |
|
).to("cuda") |
|
``` |
|
|
|
- Condition Image |
|
```py |
|
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_zeo.jpg" |
|
image = load_image(url) |
|
image = zoe_depth(image, gamma_corrected=True, detect_resolution=512, image_resolution=1024) |
|
``` |
|
<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"/></a> |
|
|
|
- Generation |
|
```py |
|
prompt = "A photo of a orchid, 4k photo, highly detailed" |
|
negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured" |
|
|
|
gen_images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=30, |
|
adapter_conditioning_scale=1, |
|
guidance_scale=7.5, |
|
).images[0] |
|
gen_images.save('out_zoe.png') |
|
``` |
|
<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"/></a> |
|
|
|
|
|
### Training |
|
|
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/t2i_adapter/README_sdxl.md). |
|
|
|
The model is trained on 3M high-resolution image-text pairs from LAION-Aesthetics V2 with |
|
|
|
- Training steps: 25000 |
|
- Batch size: Data parallel with a single gpu batch size of `16` for a total batch size of `256`. |
|
- Learning rate: Constant learning rate of `1e-5`. |
|
- Mixed precision: fp16 |