This model is a fine-tuned version of PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T on the openhermes dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2355

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4654 0.0 1 3.5326
1.2162 0.05 1503 1.9335
1.1918 0.1 3006 1.7391
1.4188 0.15 4509 1.7574
1.8281 0.2 6012 1.6704
0.8639 0.25 7515 1.7459
1.3764 0.3 9018 1.6832
2.1172 0.35 10521 1.6398
1.1855 0.4 12024 1.6007
1.5604 0.45 13527 1.5256
1.0224 0.5 15030 1.4891
1.5582 0.55 16533 1.4903
0.9489 0.6 18036 1.4179
1.67 0.65 19539 1.4585
0.8542 0.7 21042 1.3810
1.5301 0.75 22545 1.3645
0.951 0.8 24048 1.3087
1.1791 0.85 25551 1.3018
1.3342 0.9 27054 1.2595
1.1221 0.95 28557 1.2355

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
25
Safetensors
Model size
1.1B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tensoic/Tiny-Llama-openhermes-1.1B-step-715k-1.5T

Finetuned
(4)
this model
Quantizations
1 model

Dataset used to train Tensoic/Tiny-Llama-openhermes-1.1B-step-715k-1.5T