Aerial-Drone-Image-Segmentation

This model is a fine-tuned version of nvidia/mit-b0 It achieves the following results on the evaluation set:

  • Loss: 0.8852
  • Mean Iou: 0.2994
  • Mean Accuracy: 0.3923
  • Overall Accuracy: 0.7774

Model description

More information needed

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Evaluation Results

{'mean_iou': 0.27989828118195953,
 'mean_accuracy': 0.3712316062110093,
 'overall_accuracy': 0.7671712239583334,
 'per_category_iou': array([       nan, 0.8560476 , 0.32234631, 0.76880948, 0.57517691,
        0.43877125, 0.00114888, 0.14091442, 0.51807365, 0.76964765,
        0.27391949, 0.        , 0.        , 0.        , 0.        ,
        0.05778175, 0.        , 0.45566807, 0.        , 0.25864545,
        0.48767764, 0.        , 0.23313364,        nan]),
 'per_category_accuracy': array([       nan, 0.96170675, 0.43993514, 0.86977593, 0.8149788 ,
        0.49739671, 0.00114987, 0.14445379, 0.80978302, 0.88661108,
        0.46787116, 0.        , 0.        , 0.        , 0.        ,
        0.05947339, 0.        , 0.55639324, 0.        , 0.38358184,
        0.761303  , 0.        , 0.51268161,        nan])}

Training results

image/png

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy
2.7923 1.25 20 2.8338 0.0954 0.1626 0.5529
2.219 2.5 40 2.1391 0.1036 0.1666 0.5929
1.9451 3.75 60 1.7919 0.1154 0.1782 0.6129
1.7558 5.0 80 1.6767 0.1300 0.1961 0.6396
1.6381 6.25 100 1.5817 0.1383 0.2055 0.6550
1.5338 7.5 120 1.4816 0.1464 0.2140 0.6729
1.4478 8.75 140 1.4231 0.1529 0.2219 0.6823
1.361 10.0 160 1.3300 0.1637 0.2315 0.6975
1.306 11.25 180 1.3034 0.1737 0.2419 0.7060
1.2611 12.5 200 1.2692 0.1755 0.2450 0.7093
1.2317 13.75 220 1.2190 0.1821 0.2501 0.7145
1.1868 15.0 240 1.2063 0.1862 0.2539 0.7188
1.1628 16.25 260 1.1832 0.1909 0.2612 0.7234
1.1149 17.5 280 1.1368 0.2048 0.2739 0.7317
1.1009 18.75 300 1.1117 0.2232 0.2938 0.7387
1.0532 20.0 320 1.0923 0.2315 0.2997 0.7414
1.0464 21.25 340 1.0821 0.2408 0.3147 0.7480
1.0278 22.5 360 1.0541 0.2517 0.3277 0.7530
0.9945 23.75 380 1.0352 0.2612 0.3398 0.7573
0.9729 25.0 400 1.0207 0.2671 0.3511 0.7609
0.9527 26.25 420 1.0067 0.2684 0.3547 0.7609
0.9494 27.5 440 0.9870 0.2713 0.3548 0.7627
0.9287 28.75 460 0.9729 0.2745 0.3619 0.7640
0.9089 30.0 480 0.9561 0.2791 0.3640 0.7680
0.9064 31.25 500 0.9500 0.2799 0.3712 0.7672
0.8681 32.5 520 0.9397 0.2845 0.3749 0.7696
0.8677 33.75 540 0.9340 0.2835 0.3737 0.7692
0.8663 35.0 560 0.9243 0.2862 0.3755 0.7716
0.8629 36.25 580 0.9173 0.2869 0.3766 0.7719
0.8542 37.5 600 0.9112 0.2908 0.3810 0.7740
0.8391 38.75 620 0.9050 0.2904 0.3812 0.7734
0.8392 40.0 640 0.9027 0.2917 0.3818 0.7734
0.8306 41.25 660 0.8949 0.2941 0.3841 0.7755
0.8213 42.5 680 0.8936 0.2958 0.3875 0.7760
0.8406 43.75 700 0.8910 0.2964 0.3879 0.7763
0.8254 45.0 720 0.8889 0.2981 0.3897 0.7764
0.8202 46.25 740 0.8880 0.2985 0.3917 0.7767
0.8013 47.5 760 0.8891 0.2989 0.3923 0.7767
0.8188 48.75 780 0.8861 0.2994 0.3926 0.7772
0.8089 50.0 800 0.8852 0.2994 0.3923 0.7774

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
395
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Thalirajesh/Aerial-Drone-Image-Segmentation

Base model

nvidia/mit-b0
Finetuned
(345)
this model

Space using Thalirajesh/Aerial-Drone-Image-Segmentation 1