TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Maya Philippine's GodziLLa 30B GPTQ

These files are GPTQ model files for Maya Philippine's GodziLLa 30B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These models were quantised using hardware kindly provided by Latitude.sh.

Repositories available

Prompt template: Alpaca

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction: {prompt}

### Response:

Provided files

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Branch Bits Group Size Act Order (desc_act) File Size ExLlama Compatible? Made With Description
main 4 None True 16.94 GB True GPTQ-for-LLaMa Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options.
gptq-4bit-32g-actorder_True 4 32 True 19.44 GB True AutoGPTQ 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed.
gptq-4bit-64g-actorder_True 4 64 True 18.18 GB True AutoGPTQ 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-4bit-128g-actorder_True 4 128 True 17.55 GB True AutoGPTQ 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-8bit--1g-actorder_True 8 None True 32.99 GB False AutoGPTQ 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed.
gptq-8bit-128g-actorder_False 8 128 False 33.73 GB False AutoGPTQ 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed.
gptq-3bit--1g-actorder_True 3 None True 12.92 GB False AutoGPTQ 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g.
gptq-3bit-128g-actorder_False 3 128 False 13.51 GB False AutoGPTQ 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/GodziLLa-30B-GPTQ:gptq-4bit-32g-actorder_True
  • With Git, you can clone a branch with:
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/GodziLLa-30B-GPTQ`
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/GodziLLa-30B-GPTQ.
  • To download from a specific branch, enter for example TheBloke/GodziLLa-30B-GPTQ:gptq-4bit-32g-actorder_True
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done"
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: GodziLLa-30B-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to set GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ installed:

GITHUB_ACTIONS=true pip install auto-gptq

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/GodziLLa-30B-GPTQ"
model_basename = "godzilla-30b-GPTQ-4bit--1g.act.order"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
To download from a specific branch, use the revision parameter, as in this example:

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction: {prompt}

### Response:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 闃挎槑, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikie艂, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Maya Philippine's GodziLLa 30B

GodziLLa-30B Released July 9, 2023

Model Description

GodziLLa-30B is an experimental combination of various proprietary Maya LoRAs with CalderaAI's Lazarus-30B. This composite model is not meant for any other use outside of research on competing LoRA adapter behavior. More specifically, since this is inherently a LlaMA model, commercial use is prohibited. This model's primary purpose is to stress test the limitations of composite LLMs and observe its performance with respect to other LLMs available on the Open LLM Leaderboard.

Godzilla Let Them Fight Meme GIF

Recommended Prompt Format

Alpaca's instruction is the recommended prompt format, but Vicuna's instruction format may also work.

Usage

To use GodziLLa-30B, you are required to provide attribution in accordance with the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Please include the following attribution notice when utilizing GodziLLa-30B in your work:

# This code uses GodziLLa-30B, a language model developed by Maya Philippines.
# The model is licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
# For more information, visit: https://creativecommons.org/licenses/by-nc/4.0/

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MayaPH/GodziLLa-30B")

model = AutoModelForCausalLM.from_pretrained("MayaPH/GodziLLa-30B")

Please ensure that you include the relevant attribution notice in your code or any other form of usage and restrict your usage to non-commercial use to comply with the license terms.

Ethical Considerations

When using GodziLLa-30B, it is important to consider the following ethical considerations:

  1. Privacy and Security: Avoid sharing sensitive personal information while interacting with the model. The model does not have privacy safeguards, so exercise caution when discussing personal or confidential matters.

  2. Fairness and Bias: The model's responses may reflect biases present in the training data. Be aware of potential biases and make an effort to evaluate responses critically and fairly.

  3. Transparency: The model operates as a predictive text generator based on patterns learned from the training data. The model's inner workings and the specific training data used are proprietary and not publicly available.

  4. User Responsibility: Users should take responsibility for their own decisions and not solely rely on the information provided by the model. Consult with the appropriate professionals or reliable sources for specific advice or recommendations.

  5. NSFW Content: The model is a merge of multiple model checkpoints and LoRA adapters. It is highly likely that the resulting model contains uncensored content that may include, but is not limited to, violence, gore, explicit language, and sexual content. If you plan to further refine this model for safe/aligned usage, you are highly encouraged to implement guardrails along with it.

Further Information

For additional information or inquiries about GodziLLa-30B, please contact the Maya Philippines iOps Team via [email protected].

Disclaimer

GodziLLa-30B is an AI language model from Maya Philippines. It is provided "as is" without warranty of any kind, express or implied. The model developers and Maya Philippines shall not be liable for any direct or indirect damages arising from the use of this model.

Acknowledgments

The development of GodziLLa-30B was made possible by Maya Philippines and the curation of the various proprietary datasets and creation of the different proprietary LoRA adapters.

Downloads last month
24
Safetensors
Model size
4.45B params
Tensor type
F32
I32
FP16
Inference Examples
Inference API (serverless) has been turned off for this model.