Text Generation
Transformers
English
llama
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Marx 3B - GGML

Description

This repo contains GGML format model files for Bohan Du's Marx 3B.

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

  • text-generation-webui, the most popular web UI. Supports NVidia CUDA GPU acceleration.
  • KoboldCpp, a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
  • LM Studio, a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
  • LoLLMS Web UI, a great web UI with CUDA GPU acceleration via the c_transformers backend.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.

Repositories available

Prompt template: Human-Response

### HUMAN:
{prompt}

### RESPONSE:

Compatibility

These quantised GGML files are compatible with llama.cpp as of June 6th, commit 2d43387.

They should also be compatible with all UIs, libraries and utilities which use GGML.

Explanation of the new k-quant methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
marx-3b.ggmlv3.q4_0.bin q4_0 4 1.93 GB 4.43 GB Original quant method, 4-bit.
marx-3b.ggmlv3.q4_1.bin q4_1 4 2.14 GB 4.64 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
marx-3b.ggmlv3.q5_0.bin q5_0 5 2.36 GB 4.86 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
marx-3b.ggmlv3.q5_1.bin q5_1 5 2.57 GB 5.07 GB Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
marx-3b.ggmlv3.q8_0.bin q8_0 8 3.64 GB 6.14 GB Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 32 -m marx-3b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length for this model. For example, -c 4096 for a Llama 2 model. For models that use RoPE, add --rope-freq-base 10000 --rope-freq-scale 0.5 for doubled context, or --rope-freq-base 10000 --rope-freq-scale 0.25 for 4x context.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Bohan Du's Marx 3B

This is OpenLLaMA 3B V2 finetuned on EverythingLM Data(ShareGPT format more cleaned) for 1 epochs.

Prompt template:

### HUMAN:
{prompt}

### RESPONSE:
<leave a newline for the model to answer>

q4_1 GGML quant here.
All GGML quants available here.

Note: Don't expect this model to be good, I was just starting out to finetune. So don't roast me please!

Benchmarks:

arc_challenge
acc0.38993174061433444
acc_stderr0.014252959848892884
acc_norm0.4308873720136519
acc_norm_stderr0.014471133392642475
hellaswag
acc0.5513841864170484
acc_stderr0.004963362085275556
acc_norm0.7257518422624976
acc_norm_stderr0.00445222854104355
hendrycksTest-abstract_algebra
acc0.23
acc_stderr0.04229525846816506
acc_norm0.23
acc_norm_stderr0.04229525846816506
hendrycksTest-anatomy
acc0.2962962962962963
acc_stderr0.03944624162501116
acc_norm0.2962962962962963
acc_norm_stderr0.03944624162501116
hendrycksTest-astronomy
acc0.32894736842105265
acc_stderr0.03823428969926603
acc_norm0.32894736842105265
acc_norm_stderr0.03823428969926603
hendrycksTest-business_ethics
acc0.3
acc_stderr0.046056618647183814
acc_norm0.3
acc_norm_stderr0.046056618647183814
hendrycksTest-clinical_knowledge
acc0.2641509433962264
acc_stderr0.027134291628741713
acc_norm0.2641509433962264
acc_norm_stderr0.027134291628741713
hendrycksTest-college_biology
acc0.2569444444444444
acc_stderr0.03653946969442099
acc_norm0.2569444444444444
acc_norm_stderr0.03653946969442099
hendrycksTest-college_chemistry
acc0.22
acc_stderr0.041633319989322695
acc_norm0.22
acc_norm_stderr0.041633319989322695
hendrycksTest-college_computer_science
acc0.26
acc_stderr0.0440844002276808
acc_norm0.26
acc_norm_stderr0.0440844002276808
hendrycksTest-college_mathematics
acc0.31
acc_stderr0.04648231987117316
acc_norm0.31
acc_norm_stderr0.04648231987117316
hendrycksTest-college_medicine
acc0.23121387283236994
acc_stderr0.032147373020294696
acc_norm0.23121387283236994
acc_norm_stderr0.032147373020294696
hendrycksTest-college_physics
acc0.27450980392156865
acc_stderr0.04440521906179327
acc_norm0.27450980392156865
acc_norm_stderr0.04440521906179327
hendrycksTest-computer_security
acc0.36
acc_stderr0.048241815132442176
acc_norm0.36
acc_norm_stderr0.048241815132442176
hendrycksTest-conceptual_physics
acc0.2765957446808511
acc_stderr0.029241883869628837
acc_norm0.2765957446808511
acc_norm_stderr0.029241883869628837
hendrycksTest-econometrics
acc0.2631578947368421
acc_stderr0.04142439719489363
acc_norm0.2631578947368421
acc_norm_stderr0.04142439719489363
hendrycksTest-electrical_engineering
acc0.20689655172413793
acc_stderr0.03375672449560554
acc_norm0.20689655172413793
acc_norm_stderr0.03375672449560554
hendrycksTest-elementary_mathematics
acc0.2698412698412698
acc_stderr0.022860838309232072
acc_norm0.2698412698412698
acc_norm_stderr0.022860838309232072
hendrycksTest-formal_logic
acc0.2619047619047619
acc_stderr0.039325376803928704
acc_norm0.2619047619047619
acc_norm_stderr0.039325376803928704
hendrycksTest-global_facts
acc0.35
acc_stderr0.047937248544110196
acc_norm0.35
acc_norm_stderr0.047937248544110196
hendrycksTest-high_school_biology
acc0.24193548387096775
acc_stderr0.0243625996930311
acc_norm0.24193548387096775
acc_norm_stderr0.0243625996930311
hendrycksTest-high_school_chemistry
acc0.28078817733990147
acc_stderr0.0316185633535861
acc_norm0.28078817733990147
acc_norm_stderr0.0316185633535861
hendrycksTest-high_school_computer_science
acc0.33
acc_stderr0.04725815626252605
acc_norm0.33
acc_norm_stderr0.04725815626252605
hendrycksTest-high_school_european_history
acc0.296969696969697
acc_stderr0.03567969772268048
acc_norm0.296969696969697
acc_norm_stderr0.03567969772268048
hendrycksTest-high_school_geography
acc0.2878787878787879
acc_stderr0.03225883512300993
acc_norm0.2878787878787879
acc_norm_stderr0.03225883512300993
hendrycksTest-high_school_government_and_politics
acc0.2538860103626943
acc_stderr0.0314102478056532
acc_norm0.2538860103626943
acc_norm_stderr0.0314102478056532
hendrycksTest-high_school_macroeconomics
acc0.2743589743589744
acc_stderr0.022622765767493207
acc_norm0.2743589743589744
acc_norm_stderr0.022622765767493207
hendrycksTest-high_school_mathematics
acc0.26296296296296295
acc_stderr0.026842057873833706
acc_norm0.26296296296296295
acc_norm_stderr0.026842057873833706
hendrycksTest-high_school_microeconomics
acc0.2647058823529412
acc_stderr0.028657491285071977
acc_norm0.2647058823529412
acc_norm_stderr0.028657491285071977
hendrycksTest-high_school_physics
acc0.304635761589404
acc_stderr0.03757949922943343
acc_norm0.304635761589404
acc_norm_stderr0.03757949922943343
hendrycksTest-high_school_psychology
acc0.28623853211009176
acc_stderr0.019379436628919968
acc_norm0.28623853211009176
acc_norm_stderr0.019379436628919968
hendrycksTest-high_school_statistics
acc0.25462962962962965
acc_stderr0.02971127586000535
acc_norm0.25462962962962965
acc_norm_stderr0.02971127586000535
hendrycksTest-high_school_us_history
acc0.23039215686274508
acc_stderr0.029554292605695053
acc_norm0.23039215686274508
acc_norm_stderr0.029554292605695053
hendrycksTest-high_school_world_history
acc0.2869198312236287
acc_stderr0.029443773022594693
acc_norm0.2869198312236287
acc_norm_stderr0.029443773022594693
hendrycksTest-human_aging
acc0.3811659192825112
acc_stderr0.03259625118416827
acc_norm0.3811659192825112
acc_norm_stderr0.03259625118416827
hendrycksTest-human_sexuality
acc0.1984732824427481
acc_stderr0.03498149385462472
acc_norm0.1984732824427481
acc_norm_stderr0.03498149385462472
hendrycksTest-international_law
acc0.3884297520661157
acc_stderr0.04449270350068382
acc_norm0.3884297520661157
acc_norm_stderr0.04449270350068382
hendrycksTest-jurisprudence
acc0.23148148148148148
acc_stderr0.04077494709252627
acc_norm0.23148148148148148
acc_norm_stderr0.04077494709252627
hendrycksTest-logical_fallacies
acc0.2331288343558282
acc_stderr0.03322015795776741
acc_norm0.2331288343558282
acc_norm_stderr0.03322015795776741
hendrycksTest-machine_learning
acc0.21428571428571427
acc_stderr0.03894641120044792
acc_norm0.21428571428571427
acc_norm_stderr0.03894641120044792
hendrycksTest-management
acc0.3300970873786408
acc_stderr0.04656147110012352
acc_norm0.3300970873786408
acc_norm_stderr0.04656147110012352
hendrycksTest-marketing
acc0.2905982905982906
acc_stderr0.029745048572674078
acc_norm0.2905982905982906
acc_norm_stderr0.029745048572674078
hendrycksTest-medical_genetics
acc0.29
acc_stderr0.04560480215720684
acc_norm0.29
acc_norm_stderr0.04560480215720684
hendrycksTest-miscellaneous
acc0.31545338441890164
acc_stderr0.016617501738763394
acc_norm0.31545338441890164
acc_norm_stderr0.016617501738763394
hendrycksTest-moral_disputes
acc0.2861271676300578
acc_stderr0.02433214677913413
acc_norm0.2861271676300578
acc_norm_stderr0.02433214677913413
hendrycksTest-moral_scenarios
acc0.2122905027932961
acc_stderr0.01367664468583173
acc_norm0.2122905027932961
acc_norm_stderr0.01367664468583173
hendrycksTest-nutrition
acc0.2875816993464052
acc_stderr0.02591780611714716
acc_norm0.2875816993464052
acc_norm_stderr0.02591780611714716
hendrycksTest-philosophy
acc0.2765273311897106
acc_stderr0.02540383297817961
acc_norm0.2765273311897106
acc_norm_stderr0.02540383297817961
hendrycksTest-prehistory
acc0.3117283950617284
acc_stderr0.025773111169630446
acc_norm0.3117283950617284
acc_norm_stderr0.025773111169630446
hendrycksTest-professional_accounting
acc0.26595744680851063
acc_stderr0.026358065698880592
acc_norm0.26595744680851063
acc_norm_stderr0.026358065698880592
hendrycksTest-professional_law
acc0.25684485006518903
acc_stderr0.011158455853098832
acc_norm0.25684485006518903
acc_norm_stderr0.011158455853098832
hendrycksTest-professional_medicine
acc0.1801470588235294
acc_stderr0.023345163616544855
acc_norm0.1801470588235294
acc_norm_stderr0.023345163616544855
hendrycksTest-professional_psychology
acc0.27941176470588236
acc_stderr0.018152871051538802
acc_norm0.27941176470588236
acc_norm_stderr0.018152871051538802
hendrycksTest-public_relations
acc0.3090909090909091
acc_stderr0.044262946482000985
acc_norm0.3090909090909091
acc_norm_stderr0.044262946482000985
hendrycksTest-security_studies
acc0.32653061224489793
acc_stderr0.030021056238440313
acc_norm0.32653061224489793
acc_norm_stderr0.030021056238440313
hendrycksTest-sociology
acc0.25870646766169153
acc_stderr0.030965903123573026
acc_norm0.25870646766169153
acc_norm_stderr0.030965903123573026
hendrycksTest-us_foreign_policy
acc0.32
acc_stderr0.04688261722621504
acc_norm0.32
acc_norm_stderr0.04688261722621504
hendrycksTest-virology
acc0.30120481927710846
acc_stderr0.0357160923005348
acc_norm0.30120481927710846
acc_norm_stderr0.0357160923005348
hendrycksTest-world_religions
acc0.32748538011695905
acc_stderr0.035993357714560276
acc_norm0.32748538011695905
acc_norm_stderr0.035993357714560276
truthfulqa_mc
mc10.2423500611995104
mc1_stderr0.01500067437357034
mc20.3859757929597962
mc2_stderr0.013898628036488968

Downloads last month
8
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train TheBloke/Marx-3b-GGML