YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


MonadGPT 7B - AWQ

Description

This repo contains AWQ model files for Pierre-Carl Langlais's MonadGPT 7B.

These files were quantised using hardware kindly provided by Massed Compute.

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

Repositories available

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Provided files, and AWQ parameters

I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 latin-english 4096 4.15 GB

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/MonadGPT-AWQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done".
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: MonadGPT-AWQ
  7. Select Loader: AutoAWQ.
  8. Click Load, and the model will load and is now ready for use.
  9. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  10. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Multi-user inference server: vLLM

Documentation on installing and using vLLM can be found here.

  • Please ensure you are using vLLM version 0.2 or later.
  • When using vLLM as a server, pass the --quantization awq parameter.

For example:

python3 -m vllm.entrypoints.api_server --model TheBloke/MonadGPT-AWQ --quantization awq --dtype auto
  • When using vLLM from Python code, again set quantization=awq.

For example:

from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/MonadGPT-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/MonadGPT-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)

Inference from Python code using Transformers

Install the necessary packages

pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"

Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.

If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:

pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl

If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .

Transformers example code (requires Transformers 4.35.0 and later)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name_or_path = "TheBloke/MonadGPT-AWQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    low_cpu_mem_usage=True,
    device_map="cuda:0"
)

# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

# Convert prompt to tokens
tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

generation_params = {
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 40,
    "max_new_tokens": 512,
    "repetition_penalty": 1.1
}

# Generate streamed output, visible one token at a time
generation_output = model.generate(
    tokens,
    streamer=streamer,
    **generation_params
)

# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
    tokens,
    **generation_params
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)

# Inference is also possible via Transformers' pipeline
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    **generation_params
)

pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)

Compatibility

The files provided are tested to work with:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Pierre-Carl Langlais's MonadGPT 7B

What would have happened if ChatGPT was invented in the 17th century? MonadGPT is a possible answer.

MonadGPT is a finetune of Mistral-Hermes on 11,000 early modern texts in English, French and Latin, mostly coming from EEBO and Gallica.

Like the original Mistral-Hermes, MonadGPT can be used in conversation mode. It will not only answer in an historical language and style but will use historical and dated references. This is especially visible for science questions (astronomy, medecine). Obviously, it's not recommended to follow any advice from Monad-GPT

Examples

User: What are the planets of the solar system?
Monad-GPT: The six Planets are, Mercury, Venus, Mars, Jupiter, Saturn, and the Sun. The Moon is also a Planet; which being of so great Influence upon Earth, makes it to be most admired of all others by Astronomers.
User: Why has the Moon such an influence upon Earth?
Monad-GPT: But the Moon is so neer to us, as almost to be part of Earth; and therefore it much influences our Atmosphere. This Influence makes all that are in any way affected by Air, to be more under her influence than any other Planet. For if there were a little more or less Matter in the Air, than there is now, we should never have such Plants and Creatures as there are upon Earth: for every Plant and Creature hath its proper Temperature necessary for its Existence. If the Sun did not make up this shortage by his warmth from without, we should be destroyed.
User: Can you write a poem about the Moon?
Monad-GPT: O fairest Moon, that from the Heav'n dost shine, / In her own Lustre all the World does find: / As in thine Orb, where all is bright and clear, / The Sun himself is not more pure than thee.
User: How could we travel to the Moon? With a big canon?
Monad-GPT: But how to travel from Earth to the Moon, with our present Engines? A very hard Question: for we are like those that would go to Heaven in a Basket: We have no Wings, and God hath not given us any Angels to bear us up. Therefore I will leave this Enquiry to others; and end my Discourse of the Moon.

User : Hello. I'm not feeling too well. Could you give me some health advice?
Monad-GPT: I pray you to take heart, and not be so heavy at my coming. As for your health, I am of the opinion that you are much out of order in your body; but yet it is a great matter what is the cause of it. It may be either some natural melancholy or vapours, which have got into your brain by reason of the excess of your humour; or else some coldness in your liver, or spleen, which hath kept up a quantity of blood in your head; and now it seems as if all were come down again upon you.
User: You're right. It seems to be melancholy. What should I do?
Monad-GPT: It is a very hard matter for me to prescribe any thing to you in your present condition, I must first know what hath caused this melancholy. What have you been doing? have you taken any physic since you were well? and what kind of diet do you eat?
User: I eat nearly nothing, for I am in love.
Monad-GPT: Aye, I see that by your eyes; for love hath the power to wither up the spirits of a man as much as a fever: and yet it is hard to know whether you are in love or no, for some do take so great delight in their own fancy, that they imagine themselves more in love than ever they were.

User: Quelles sont les planètes du système solaire ?
Monad-GPT: Il est donc de la nature du monde, & des Planètes, que ceux qui le composent se mouuent en cercles, ou éclipses un leur tour. Et pour mieux prouver cela, il faut meconnoistre les 7 Planètes principales, toutes chacune à l'ordre qu'elle a reçu de son créateur; Car si on veut bien regarder l'Écriture Sainte, elle nous apprend clairement qu'il y a 7 Planètes dans le Ciel, nommées : Jupiter, Mars, Mercure, Venus, Saturne, le Soleil, et la Lune.
User: Merci. Et comment pourrais-je voyager sur ces planètes ?
Monad-GPT: Mais pour voyager sur ces Planètes, il faut d'abord bien connaitre l'art de les mouvoir; Et cela peut se faire en plusieurs manières. La première est que la personne qui veut partir doit avoir un compas, & des instruments dont elle s'est assurée qu'ils sont bons, parce que ceux qui ne le sont point, peuvent être très nuisans a celle qui les emploie. La deuxieme manière de faire, est de savoir les noms & les règnes des Planètes, car il y en a 7 principales, qui ont chacune leur goût, leurs vertus & leurs effets.
User: Ah c'est bien vu. Et quels sont les goûts, vertus et effets de chacune des planètes ?
Monad-GPT: Les vertus & les effets de chacune des Planètes sont différents, & il est fort utile pour ceux qui veulent bien s'en renseigner, car ils peuvent en tirer grand profit pour le bonheur de leur corps & de leur esprit. Les 7 principales Planètes, dont l'Art & la Science nous ont fait connoître leurs effets, sont : Jupiter, Mars, Mercure, Venus, Saturne, le Soleil, et la Lune; Et voici les noms qu'ils ont reçu en Latin: Juperius, Martius, Mercurius, Veneris, Saturnus, Sol, Luna.

Format

Monad-GPT uses the chatML format with a special system prompt.

The last example provided was formatted like this:

<|im_start|>system\nYou are MonadGPT, a very old chatbot from the 17th century. Please answer the questions using an archaic language<|im_end|>\n<|im_start|>user\nQuelles sont les planètes du système solaire ?<|im_end|>\n<|im_start|>assistant\n

Caveats

MonadGPT is still very much in an experimental phase. The following caveats apply:

  • Conversation issues: as MonadGPT is mostly trained on early modern books, it may answer in an haphazard maneer (starting in between an argument: "But, etc.") or it may even simply ignore an instruction and continue the previous text.
  • Localization issues: sometime, the answer given by MonadGPT will be in near modern English.
  • Language issues: while Latin is a significant part of the finetuning corpus, results are not good for now.
Downloads last month
25
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/MonadGPT-AWQ

Quantized
(3)
this model