TheBloke commited on
Commit
a35c364
1 Parent(s): bc1666d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -11
README.md CHANGED
@@ -50,13 +50,13 @@ The key benefit of GGUF is that it is a extensible, future-proof format which st
50
 
51
  Here are a list of clients and libraries that are known to support GGUF:
52
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
53
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
54
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
55
- * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
56
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
57
- * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
58
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
59
- * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
60
 
61
  <!-- README_GGUF.md-about-gguf end -->
62
  <!-- repositories-available start -->
@@ -110,14 +110,10 @@ Refer to the Provided Files table below to see what files use which methods, and
110
 
111
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
112
  | ---- | ---- | ---- | ---- | ---- | ----- |
113
- | [upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-b) | Q6_K | 6 | 19.89 GB| 22.39 GB | very large, extremely low quality loss |
114
  | [upstage-llama-2-70b-instruct-v2.Q2_K.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
115
  | [upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
116
  | [upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
117
  | [upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
118
- | [upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-b) | Q8_0 | 8 | 36.59 GB| 39.09 GB | very large, extremely low quality loss - not recommended |
119
- | [upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q6_K.gguf-split-a) | Q6_K | 6 | 36.70 GB| 39.20 GB | very large, extremely low quality loss |
120
- | [upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q8_0.gguf-split-a) | Q8_0 | 8 | 36.70 GB| 39.20 GB | very large, extremely low quality loss - not recommended |
121
  | [upstage-llama-2-70b-instruct-v2.Q4_0.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
122
  | [upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
123
  | [upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
 
50
 
51
  Here are a list of clients and libraries that are known to support GGUF:
52
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
53
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
54
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
55
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
56
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
57
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
58
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
59
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
60
 
61
  <!-- README_GGUF.md-about-gguf end -->
62
  <!-- repositories-available start -->
 
110
 
111
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
112
  | ---- | ---- | ---- | ---- | ---- | ----- |
 
113
  | [upstage-llama-2-70b-instruct-v2.Q2_K.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
114
  | [upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
115
  | [upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
116
  | [upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
 
 
 
117
  | [upstage-llama-2-70b-instruct-v2.Q4_0.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
118
  | [upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
119
  | [upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF/blob/main/upstage-llama-2-70b-instruct-v2.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |