TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Vigostral 7B Chat - AWQ

Description

This repo contains AWQ model files for bofeng huang's Vigostral 7B Chat.

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

Repositories available

Prompt template: Vigogne-Llama-2-Chat

<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

{prompt} [/INST] 

Provided files, and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 French news 4096 4.15 GB

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/Vigostral-7B-Chat-AWQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done".
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: Vigostral-7B-Chat-AWQ
  7. Select Loader: AutoAWQ.
  8. Click Load, and the model will load and is now ready for use.
  9. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  10. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Multi-user inference server: vLLM

Documentation on installing and using vLLM can be found here.

  • Please ensure you are using vLLM version 0.2 or later.
  • When using vLLM as a server, pass the --quantization awq parameter.

For example:

python3 python -m vllm.entrypoints.api_server --model TheBloke/Vigostral-7B-Chat-AWQ --quantization awq
  • When using vLLM from Python code, again set quantization=awq.

For example:

from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

{prompt} [/INST] 
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/Vigostral-7B-Chat-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/Vigostral-7B-Chat-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

{prompt} [/INST] 
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)

Inference from Python code using AutoAWQ

Install the AutoAWQ package

Requires: AutoAWQ 0.1.1 or later.

pip3 install autoawq

If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .

AutoAWQ example code

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/Vigostral-7B-Chat-AWQ"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)

prompt = "Tell me about AI"
prompt_template=f'''<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

{prompt} [/INST] 
'''

print("*** Running model.generate:")

token_input = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    token_input,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("LLM output: ", text_output)

"""
# Inference should be possible with transformers pipeline as well in future
# But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
"""

Compatibility

The files provided are tested to work with:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: bofeng huang's Vigostral 7B Chat

Vigostral-7B-Chat: A French chat LLM

Preview of Vigostral-7B-Chat, a new addition to the Vigogne LLMs family, fine-tuned on Mistral-7B-v0.1.

For more information, please visit the Github repository.

License: A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's terms of use.

Prompt Template

We used a prompt template adapted from the chat format of Llama-2.

You can apply this formatting using the chat template through the apply_chat_template() method.

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bofenghuang/vigostral-7b-chat")

conversation = [
    {"role": "user", "content": "Bonjour ! Comment ça va aujourd'hui ?"},
    {"role": "assistant", "content": "Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?"},
    {"role": "user", "content": "Quelle est la hauteur de la Tour Eiffel ?"},
    {"role": "assistant", "content": "La Tour Eiffel mesure environ 330 mètres de hauteur."},
    {"role": "user", "content": "Comment monter en haut ?"},
]

print(tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True))

You will get

<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

Bonjour ! Comment ça va aujourd'hui ? [/INST] Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ? </s>[INST] Quelle est la hauteur de la Tour Eiffel ? [/INST] La Tour Eiffel mesure environ 330 mètres de hauteur. </s>[INST] Comment monter en haut ? [/INST]

Usage

Inference using the unquantized model with 🤗 Transformers

from typing import Dict, List, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer

model_name_or_path = "bofenghuang/vigostral-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto")

streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)


def chat(
    query: str,
    history: Optional[List[Dict]] = None,
    temperature: float = 0.7,
    top_p: float = 1.0,
    top_k: float = 0,
    repetition_penalty: float = 1.1,
    max_new_tokens: int = 1024,
    **kwargs,
):
    if history is None:
        history = []

    history.append({"role": "user", "content": query})

    input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device)
    input_length = input_ids.shape[1]

    generated_outputs = model.generate(
        input_ids=input_ids,
        generation_config=GenerationConfig(
            temperature=temperature,
            do_sample=temperature > 0.0,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer.eos_token_id,
            **kwargs,
        ),
        streamer=streamer,
        return_dict_in_generate=True,
    )

    generated_tokens = generated_outputs.sequences[0, input_length:]
    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)

    history.append({"role": "assistant", "content": generated_text})

    return generated_text, history

# 1st round
response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None)
# Pour calculer la vitesse d'un escargot qui parcourt 100 mètres en 5 heures, nous devons diviser la distance parcourue par le temps écoulé. Voici comment procédons :
# 
# Vitesse = Distance / Temps
# 
# Dans ce cas, la distance est de 100 mètres et le temps est de 5 heures. Donc, nous avons :
# 
# Vitesse = 100 mètres / 5 heures
# Vitesse = 20 mètres par heure
# 
# L'escargot parcourt donc une vitesse de 20 mètres par heure.

# 2nd round
response, history = chat("Quand il peut dépasser le lapin ?", history=history)
# Malheureusement, je ne peux pas répondre à cette question car elle contient des informations inexactes ou incorrectes. La vitesse de l'escargot est de 20 mètres par heure, tandis que la vitesse du lapin n'est pas mentionnée dans votre question initiale. Pour comparer les vitesses des deux animaux, nous aurions besoin de connaître la vitesse du lapin.

# 3rd round
response, history = chat("Écris une histoire imaginative qui met en scène une compétition de course entre un escargot et un lapin.", history=history)
# Il était une fois deux athlètes extraordinaires : un escargot nommé Escargo et un lapin appelé Lapin Rapide. Un jour, ils ont décidé de participer à une grande course pour déterminer qui était le plus rapide des deux. Tout le monde était curieux de savoir qui serait le gagnant, car ils étaient tous émerveillés par la vitesse de ces deux champions.
# 
# La course commença dans une forêt dense, avec Escargo départageant un peu lentement, car il faut être prudent lorsqu'on est escargot. Mais au fur et à mesure qu'il avançait, il commença à ralentir encore plus. Les spectateurs commencèrent à pencher pour Lapin Rapide, qui fonçait rapidement vers la ligne d'arrivée.
# 
# Mais soudain, Escargo se transforma en une force incroyable. Au lieu de marcher lentement comme un escargot, il courait à toute allure, faisant preuve d'une vitesse surprenante. Les spectateurs essayaient de se remémorer leurs notes de mathématiques pour calculer sa vélocité actuelle.
# 
# Pendant ce temps, Lapin Rapide ralentissait légèrement, trouvant l'air frais trop confortable pour continuer à courir aussi vite. Il décida alors de prendre quelques pauses pour profiter de son environnement.
# 
# Escargo continuait à courir à toute vitesse, en dépit de son handicap d'être un escargot. Les spectateurs étaient émerveillés par sa persévérance et sa volonté de gagner. Finalement, Escargo franchit la ligne d'arrivée en premier, et tous criaurent en joie.
# 
# Les habitants de la forêt décidèrent de lui décerner le titre d'"athlète le plus courageux" pour sa performance incroyable. Quant à Lapin Rapide, il fut content de sa deuxième place, se disant simplement que les pauses étaient bien plus agréables que la compétition. Et tous vécurent heureux et satisfaits de cette course mémorable.

You can also use the Google Colab Notebook provided below.

Open In Colab

Inference using the unquantized model with vLLM

Set up an OpenAI-compatible server with the following command:

# Install vLLM
# This may take 5-10 minutes.
# pip install vllm

# Start server for Vigostral-Chat models
python -m vllm.entrypoints.openai.api_server --model bofenghuang/vigostral-7b-chat

# List models
# curl http://localhost:8000/v1/models

Query the model using the openai python package.

import openai

# Modify OpenAI's API key and API base to use vLLM's API server.
openai.api_key = "EMPTY"
openai.api_base = "http://localhost:8000/v1"

# First model
models = openai.Model.list()
model = models["data"][0]["id"]

# Chat completion API
chat_completion = openai.ChatCompletion.create(
    model=model,
    messages=[
        {"role": "user", "content": "Parle-moi de toi-même."},
    ],
    max_tokens=1024,
    temperature=0.7,
)
print("Chat completion results:", chat_completion)

Limitations

Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.

Downloads last month
13
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/Vigostral-7B-Chat-AWQ

Quantized
(3)
this model