TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Dragon Yi 6B v0 - AWQ

Description

This repo contains AWQ model files for llmware's Dragon Yi 6B v0.

These files were quantised using hardware kindly provided by Massed Compute.

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

Repositories available

Prompt template: human-bot

<human>: {prompt}
<bot>:

Provided files, and AWQ parameters

I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 wikitext 4096 3.93 GB

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/dragon-yi-6B-v0-AWQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done".
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: dragon-yi-6B-v0-AWQ
  7. Select Loader: AutoAWQ.
  8. Click Load, and the model will load and is now ready for use.
  9. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  10. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Multi-user inference server: vLLM

Documentation on installing and using vLLM can be found here.

  • Please ensure you are using vLLM version 0.2 or later.
  • When using vLLM as a server, pass the --quantization awq parameter.

For example:

python3 -m vllm.entrypoints.api_server --model TheBloke/dragon-yi-6B-v0-AWQ --quantization awq --dtype auto
  • When using vLLM from Python code, again set quantization=awq.

For example:

from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<human>: {prompt}
<bot>:
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/dragon-yi-6B-v0-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/dragon-yi-6B-v0-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<human>: {prompt}
<bot>:
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)

Inference from Python code using Transformers

Install the necessary packages

pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"

Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.

If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:

pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl

If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .

Transformers example code (requires Transformers 4.35.0 and later)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name_or_path = "TheBloke/dragon-yi-6B-v0-AWQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    low_cpu_mem_usage=True,
    device_map="cuda:0"
)

# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "Tell me about AI"
prompt_template=f'''<human>: {prompt}
<bot>:
'''

# Convert prompt to tokens
tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

generation_params = {
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 40,
    "max_new_tokens": 512,
    "repetition_penalty": 1.1
}

# Generate streamed output, visible one token at a time
generation_output = model.generate(
    tokens,
    streamer=streamer,
    **generation_params
)

# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
    tokens,
    **generation_params
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)

# Inference is also possible via Transformers' pipeline
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    **generation_params
)

pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)

Compatibility

The files provided are tested to work with:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 闃挎槑, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bj盲reholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: llmware's Dragon Yi 6B v0

Model Card for Model ID

dragon-yi-6b-v0 part of the dRAGon ("Delivering RAG On ...") model series, RAG-instruct trained on top of a Yi-6B base model.

DRAGON models have been fine-tuned with the specific objective of fact-based question-answering over complex business and legal documents with an emphasis on reducing hallucinations and providing short, clear answers for workflow automation.

Benchmark Tests

Evaluated against the benchmark test: RAG-Instruct-Benchmark-Tester
Average of 2 Test Runs with 1 point for correct answer, 0.5 point for partial correct or blank / NF, 0.0 points for incorrect, and -1 points for hallucinations.

--Accuracy Score: 99.5 correct out of 100
--Not Found Classification: 90.0%
--Boolean: 87.5%
--Math/Logic: 77.5%
--Complex Questions (1-5): 4 (Above Average)
--Summarization Quality (1-5): 4 (Above Average)
--Hallucinations: No hallucinations observed in test runs.

For test run results (and good indicator of target use cases), please see the files ("core_rag_test" and "answer_sheet" in this repo).

Model Description

  • Developed by: llmware
  • Model type: Yi
  • Language(s) (NLP): English
  • License: Yi License Link
  • Finetuned from model: Yi-6B

Direct Use

DRAGON is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services, legal and regulatory industries with complex information sources.

DRAGON models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.

This model is licensed according to the terms of the license of the base model, Yi-6B, at this link.

Bias, Risks, and Limitations

Any model can provide inaccurate or incomplete information, and should be used in conjunction with appropriate safeguards and fact-checking mechanisms.

How to Get Started with the Model

The fastest way to get started with BLING is through direct import in transformers:

from transformers import AutoTokenizer, AutoModelForCausalLM  
tokenizer = AutoTokenizer.from_pretrained("dragon-yi-6b-v0")  
model = AutoModelForCausalLM.from_pretrained("dragon-yi-6b-v0")  

Please refer to the generation_test .py files in the Files repository, which includes 200 samples and script to test the model. The generation_test_llmware_script.py includes built-in llmware capabilities for fact-checking, as well as easy integration with document parsing and actual retrieval to swap out the test set for RAG workflow consisting of business documents.

The DRAGON model was fine-tuned with a simple "<human> and <bot> wrapper", so to get the best results, wrap inference entries as:

full_prompt = "<human>: " + my_prompt + "\n" + "<bot>:"

The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:

  1. Text Passage Context, and
  2. Specific question or instruction based on the text passage

To get the best results, package "my_prompt" as follows:

my_prompt = {{text_passage}} + "\n" + {{question/instruction}}

If you are using a HuggingFace generation script:

# prepare prompt packaging used in fine-tuning process
new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"

inputs = tokenizer(new_prompt, return_tensors="pt")  
start_of_output = len(inputs.input_ids[0])

#   temperature: set at 0.3 for consistency of output
#   max_new_tokens:  set at 100 - may prematurely stop a few of the summaries

outputs = model.generate(
        inputs.input_ids.to(device),
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        temperature=0.3,
        max_new_tokens=100,
        )

output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)  

Model Card Contact

Darren Oberst & llmware team

Downloads last month
17
Safetensors
Model size
1.27B params
Tensor type
I32
BF16
FP16
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/dragon-yi-6B-v0-AWQ

Quantized
(3)
this model