TheBlueObserver's picture
068fa6eb4341b15eb076a01189823e5241a699e3a3868092adca622053a29207
96cec71 verified
|
raw
history blame
1.26 kB
metadata
base_model: google/gemma-2-27b-it
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
  - mlx
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license

TheBlueObserver/gemma-2-27b-it-MLX-196c8

The Model TheBlueObserver/gemma-2-27b-it-MLX-196c8 was converted to MLX format from google/gemma-2-27b-it using mlx-lm version 0.20.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("TheBlueObserver/gemma-2-27b-it-MLX-196c8")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)