gemma-2-2b-it-MLX / README.md
TheBlueObserver's picture
0faacf7155b17ce25cfa665c177a6e6e96f8a93543e3d799751477262cb601dc
5d8e90d verified
|
raw
history blame
1.25 kB
metadata
base_model: google/gemma-2-2b-it
library_name: transformers
license: gemma
pipeline_tag: text-generation
tags:
  - conversational
  - mlx
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
  To access Gemma on Hugging Face, you’re required to review and agree to
  Google’s usage license. To do this, please ensure you’re logged in to Hugging
  Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license

TheBlueObserver/gemma-2-2b-it-MLX

The Model TheBlueObserver/gemma-2-2b-it-MLX was converted to MLX format from google/gemma-2-2b-it using mlx-lm version 0.20.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("TheBlueObserver/gemma-2-2b-it-MLX")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)