|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/nllb-200-distilled-600M |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: nllb-200-distilled-600M-finetuned_ramayana_sns_lexr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nllb-200-distilled-600M-finetuned_ramayana_sns_lexr |
|
|
|
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2899 |
|
- Rouge1: 18.7327 |
|
- Rouge2: 2.1067 |
|
- Rougel: 14.4307 |
|
- Rougelsum: 16.856 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 4.5091 | 1.0 | 427 | 4.0603 | 16.2779 | 1.6057 | 13.7589 | 14.9914 | |
|
| 4.1329 | 2.0 | 854 | 3.8728 | 16.1259 | 1.3608 | 13.0307 | 14.5339 | |
|
| 3.9846 | 3.0 | 1281 | 3.7534 | 17.0824 | 1.7524 | 13.8469 | 15.5679 | |
|
| 3.8863 | 4.0 | 1708 | 3.6693 | 16.9334 | 1.7307 | 13.8506 | 15.5077 | |
|
| 3.8144 | 5.0 | 2135 | 3.5996 | 18.0132 | 1.9515 | 14.3725 | 16.3556 | |
|
| 3.7542 | 6.0 | 2562 | 3.5460 | 17.4338 | 1.8704 | 14.1021 | 15.9508 | |
|
| 3.7068 | 7.0 | 2989 | 3.5052 | 17.5684 | 2.0413 | 14.0332 | 15.9409 | |
|
| 3.665 | 8.0 | 3416 | 3.4695 | 18.2728 | 2.0033 | 14.2529 | 16.6322 | |
|
| 3.6288 | 9.0 | 3843 | 3.4347 | 18.0755 | 2.2161 | 14.0724 | 16.4611 | |
|
| 3.5969 | 10.0 | 4270 | 3.4081 | 18.3883 | 2.1437 | 14.3847 | 16.7879 | |
|
| 3.5718 | 11.0 | 4697 | 3.3840 | 18.9654 | 2.2593 | 14.6253 | 17.3421 | |
|
| 3.5464 | 12.0 | 5124 | 3.3619 | 18.9897 | 2.352 | 14.679 | 17.4166 | |
|
| 3.5302 | 13.0 | 5551 | 3.3465 | 18.9671 | 2.246 | 14.4441 | 17.16 | |
|
| 3.5102 | 14.0 | 5978 | 3.3309 | 18.5565 | 2.1854 | 14.1515 | 16.6572 | |
|
| 3.4992 | 15.0 | 6405 | 3.3171 | 19.0665 | 2.1941 | 14.7519 | 17.2236 | |
|
| 3.4851 | 16.0 | 6832 | 3.3075 | 18.5714 | 2.1059 | 14.3258 | 16.7627 | |
|
| 3.4765 | 17.0 | 7259 | 3.2998 | 18.5252 | 2.083 | 14.1246 | 16.724 | |
|
| 3.464 | 18.0 | 7686 | 3.2944 | 18.9694 | 2.1503 | 14.6684 | 17.0653 | |
|
| 3.4647 | 19.0 | 8113 | 3.2911 | 18.6916 | 2.1447 | 14.4372 | 16.8423 | |
|
| 3.4585 | 20.0 | 8540 | 3.2899 | 18.7327 | 2.1067 | 14.4307 | 16.856 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.15.2 |
|
|