Usage method:

from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image

model = VisionEncoderDecoderModel.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption")
feature_extractor = ViTImageProcessor.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption")
tokenizer = AutoTokenizer.from_pretrained("AIris-Channel/vit-gpt2-verifycode-caption")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
  images = []
  for image_path in image_paths:
    i_image = Image.open(image_path)
    if i_image.mode != "RGB":
      i_image = i_image.convert(mode="RGB")

    images.append(i_image)

  pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
  pixel_values = pixel_values.to(device)

  output_ids = model.generate(pixel_values, **gen_kwargs)

  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
  preds = [pred.strip() for pred in preds]
  return preds

pred=predict_step(['ZZZTVESE.jpg'])
print(pred) #zzztvese
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.