eusip's picture
Update README.md
0f30221
|
raw
history blame
2.23 kB
metadata
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: dit-base-rvlcdip-finetuned-grp-actual
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9015151515151515

dit-base-rvlcdip-finetuned-grp-actual

This model is a fine-tuned version of Tidzo/dit-base-rvlcdip-finetuned-grp-actual on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4601
  • Accuracy: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8692 0.96 18 0.6972 0.8561
0.7348 1.97 37 0.6350 0.8598
0.6655 2.99 56 0.5339 0.8712
0.7167 4.0 75 0.5046 0.8902
0.694 4.96 93 0.5026 0.8864
0.6638 5.97 112 0.4601 0.9015
0.6618 6.72 126 0.4582 0.8977

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3