See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- data_files: out/train.jsonl
path: out/
ds_type: json
type:
alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./mistral_fine_out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
auto_resume_from_checkpoint: true
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 0.05
eval_table_size:
eval_table_max_new_tokens: 128
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
model_config:
sliding_window: 4096
mistral_fine_out
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on a synthetic appeals dataset. See the health insurance fine tuning repo for details. An earlier version of this dataset is availabile.
It achieves the following results on the evaluation set:
- Loss: 0.7984
Model description
Generate health insurance appeals. Early work.
Intended uses & limitations
It is intended to be used as part of the fight health insurance web app who's repo is at https://github.com/totallylegitco/fighthealthinsurance
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0397 | 0.0004 | 1 | 1.1590 |
0.6084 | 0.1002 | 230 | 0.7272 |
0.5195 | 0.2003 | 460 | 0.7141 |
0.4713 | 0.3005 | 690 | 0.7090 |
0.3973 | 0.4007 | 920 | 0.7097 |
0.3306 | 0.5009 | 1150 | 0.7145 |
0.3507 | 0.6010 | 1380 | 0.7136 |
0.3125 | 0.7012 | 1610 | 0.7200 |
0.3055 | 0.8014 | 1840 | 0.7227 |
0.2027 | 0.9016 | 2070 | 0.7301 |
0.2632 | 1.0017 | 2300 | 0.7471 |
0.2077 | 1.0851 | 2530 | 0.7662 |
0.0992 | 1.1853 | 2760 | 0.7744 |
0.236 | 1.2855 | 2990 | 0.7844 |
0.1572 | 1.3857 | 3220 | 0.7915 |
0.192 | 1.4858 | 3450 | 0.7921 |
0.1812 | 1.5860 | 3680 | 0.7968 |
0.1973 | 1.6862 | 3910 | 0.7979 |
0.1422 | 1.7864 | 4140 | 0.7982 |
0.1315 | 1.8865 | 4370 | 0.7984 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for TotallyLegitCo/fighthealthinsurance_model_v0.5
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3