vit-base-patch16-224-in21k-finetuned
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1228
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5651 | 0.9816 | 40 | 0.7021 | 0.5 |
0.3002 | 1.9877 | 81 | 0.7162 | 0.625 |
0.251 | 2.9939 | 122 | 0.8250 | 0.625 |
0.1628 | 4.0 | 163 | 0.8735 | 0.625 |
0.1763 | 4.9816 | 203 | 0.7803 | 0.625 |
0.1694 | 5.9877 | 244 | 0.3916 | 0.6875 |
0.1572 | 6.9939 | 285 | 0.6275 | 0.8125 |
0.1343 | 8.0 | 326 | 1.3112 | 0.625 |
0.1629 | 8.9816 | 366 | 0.5798 | 0.625 |
0.1675 | 9.9877 | 407 | 0.4662 | 0.8125 |
0.1254 | 10.9939 | 448 | 0.4484 | 0.8125 |
0.136 | 12.0 | 489 | 0.3055 | 0.8125 |
0.1303 | 12.9816 | 529 | 0.2235 | 0.875 |
0.177 | 13.9877 | 570 | 0.4362 | 0.8125 |
0.125 | 14.9939 | 611 | 0.5964 | 0.625 |
0.1059 | 16.0 | 652 | 0.5711 | 0.6875 |
0.1012 | 16.9816 | 692 | 0.1228 | 1.0 |
0.0945 | 17.9877 | 733 | 0.1478 | 1.0 |
0.1169 | 18.9939 | 774 | 0.2164 | 0.9375 |
0.0968 | 19.6319 | 800 | 0.2333 | 0.875 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Towen/vit-base-patch16-224-in21k-finetuned
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldervalidation set self-reported1.000