!pip install flask transformers pyngrok --quiet # install library
from flask import Flask, request, jsonify
from transformers import T5Tokenizer, T5ForConditionalGeneration
import tensorflow
from pyngrok import ngrok
import json
import torch
import requests
# format output json
def parse_questions(raw_json):
import re
questions = []
question_blocks = re.split(r"Q:\s", raw_json["generated_text"])
for idx, block in enumerate(question_blocks[1:], start=1): # Skip the first part of the question
try:
question_match = re.search(r"(.+?)\sA:", block)
options_match = re.search(r"A:\s(.+?)\sCorrect:", block, re.DOTALL)
correct_match = re.search(r"Correct:\s(.+)", block)
question = question_match.group(1).strip() if question_match else None
options_raw = options_match.group(1).strip() if options_match else None
correct_answer = correct_match.group(1).strip() if correct_match else None
options = {}
if options_raw:
option_list = re.split(r"\d\)", options_raw)
for i, option in enumerate(option_list[1:], start=1):
options[chr(64 + i)] = option.strip()
questions.append({
"id": f"Q{idx}",
"Question": question,
"options": options,
"correct_answer": correct_answer
})
except Exception as e:
print(f"Error parsing block {idx}: {e}")
return questions
app = Flask(__name__)
ngrok.set_auth_token("Ngrok_Auth_Token")
public_url = ngrok.connect(5000)
print("Ngrok URL:", public_url)
model_name = "TranVanTri352/MCQ_Paragraph_AI_Model"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name, from_tf=True)
@app.route('/status', methods=['GET'])
def model_status():
try:
# Check if the model is loaded
if model and tokenizer:
return jsonify({
'status': 'ready',
'model_name': model_name,
'framework': 'transformers',
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
'message': 'Model is loaded and ready for inference.'
}), 200
else:
return jsonify({
'status': 'not_ready',
'message': 'Model or tokenizer is not loaded.'
}), 500
except Exception as e:
return jsonify({
'status': 'error',
'message': f'Error occurred while checking model status: {str(e)}'
}), 500
@app.route('/generate', methods=['POST'])
def generate_text():
try:
data = request.json
if not data or 'text' not in data:
return jsonify({'error': 'Invalid input, "text" is required'}), 400
input_text = "Generate a question and multiple answers based on this article: " + data['text']
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
all_outputs = []
# Loop to generate 5 outputs
for i in range(5):
torch.manual_seed(i) # Set different seeds to increase randomness
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=128,
do_sample=True, # Turn on random mode
temperature=0.9, # Increase randomness
top_k=30, # Choose only the word with the highest probability in the top 30
top_p=0.9, # Nucleus sampling
repetition_penalty=1.5, # Limit repetition
)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
all_outputs.append(output_text)
final_output = " ".join(all_outputs)
# Parse the final output into formatted questions
parsed_questions = parse_questions({"generated_text": final_output})
json_data = json.dumps(parsed_questions)
return jsonify({'questions': parsed_questions}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'Service is healthy'}), 200
print(f"Public URL: {public_url}")
# Flask
if __name__ == "__main__":
app.run(debug=False)
#Test Result #Request /generate
{
"text": "Originally from Gangseo District, Seoul, Faker was signed by SKT in 2013, and quickly established himself as one of the league's top players. In his debut year, he achieved both an LCK title and a World Championship victory with SKT. From 2014 to 2017, Faker added five more LCK titles to his name, along with two MSI titles in 2016 and 2017, and two additional World Championships in 2015 and 2016. During this time, he also emerged victorious in the All-Star Paris 2014 and the IEM World Championship in 2016. Between 2019 and 2022, Faker secured four more LCK titles, becoming the first player to reach a total of 10. He also represented the South Korean national team at the 2018 Asian Games, earning a silver medal, and the 2022 Asian Games, earning a gold."
}
- Downloads last month
- 240
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for TranVanTri352/MCQ_Paragraph_AI_Model
Base model
google-t5/t5-small