|
--- |
|
license: cc-by-sa-4.0 |
|
--- |
|
# Usage |
|
|
|
```python |
|
import re |
|
import urllib.parse |
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import nltk.tokenize |
|
import torch |
|
|
|
preprocess_tokenizer_regex = r'[^\W_0-9]+|[^\w\s]+|_+|\s+|[0-9]+' # Similar to wordpunct_tokenize |
|
preprocess_tokenizer = nltk.tokenize.RegexpTokenizer(preprocess_tokenizer_regex).tokenize |
|
|
|
def preprocess_url(url): |
|
protocol_idx = url.find("://") |
|
protocol_idx = (protocol_idx + 3) if protocol_idx != -1 else 0 |
|
url = url.rstrip('/')[protocol_idx:] |
|
url = urllib.parse.unquote(url, errors="backslashreplace") |
|
|
|
# Remove blanks |
|
url = re.sub(r'\s+', ' ', url) |
|
url = re.sub(r'^\s+|\s+$', '', url) |
|
|
|
# Tokenize |
|
url = ' '.join(preprocess_tokenizer(url)) |
|
|
|
return url |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Transducens/xlm-roberta-base-parallel-urls-classifier") |
|
model = AutoModelForSequenceClassification.from_pretrained("Transducens/xlm-roberta-base-parallel-urls-classifier") |
|
|
|
# prepare input |
|
url1 = preprocess_url("https://web.ua.es/en/culture.html") |
|
url2 = preprocess_url("https://web.ua.es/es/cultura.html") |
|
urls = f"{url1}{tokenizer.sep_token}{url2}" |
|
encoded_input = tokenizer(urls, add_special_tokens=True, truncation=True, padding="longest", |
|
return_attention_mask=True, return_tensors="pt", max_length=256) |
|
|
|
# forward pass |
|
output = model(encoded_input["input_ids"], encoded_input["attention_mask"]) |
|
|
|
# obtain probability |
|
probability = torch.sigmoid(output["logits"]).cpu().squeeze().item() |
|
|
|
print(probability) |
|
``` |
|
|