aychang_bert-base-cased-trec-coarse-finetuned-lora-tweet_eval_emotion

This model is a fine-tuned version of aychang/bert-base-cased-trec-coarse on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.7406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

accuracy train_loss epoch
0.2460 None 0
0.4545 1.2636 0
0.6043 1.1509 1
0.7193 0.9356 2
0.7406 0.8091 3

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support peft models for this pipeline type.

Model tree for TransferGraph/aychang_bert-base-cased-trec-coarse-finetuned-lora-tweet_eval_emotion

Adapter
(3)
this model

Dataset used to train TransferGraph/aychang_bert-base-cased-trec-coarse-finetuned-lora-tweet_eval_emotion

Evaluation results