Tremontaine's picture
Upload folder using huggingface_hub
64115a2 verified
|
raw
history blame
2.3 kB
---
base_model:
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
tags:
- merge
- mergekit
- lazymergekit
- Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
---
# Llama3-UmbralMind-v1-15M
Llama3-UmbralMind-v1-15M is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B)
* [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B)
* [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B)
* [Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B)
## 🧩 Configuration
```yaml
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 24]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
- sources:
- layer_range: [8, 24]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- layer_range: [8, 24]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- layer_range: [24, 32]
model: Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Tremontaine/Llama3-UmbralMind-v1-15M"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```