Triangle104's picture
Update README.md
a08f344 verified
metadata
base_model: nbeerbower/Mistral-Nemo-Gutenberg-Doppel-12B-v2
datasets:
  - jondurbin/gutenberg-dpo-v0.1
  - nbeerbower/gutenberg2-dpo
library_name: transformers
license: apache-2.0
tags:
  - llama-cpp
  - gguf-my-repo

Triangle104/Mistral-Nemo-Gutenberg-Doppel-12B-v2-Q6_K-GGUF

This model was converted to GGUF format from nbeerbower/Mistral-Nemo-Gutenberg-Doppel-12B-v2 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Mistral-Nemo-Gutenberg-Doppel-12B

axolotl-ai-co/romulus-mistral-nemo-12b-simpo finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo. Method

ORPO tuned with 2x A100 for 3 epochs.


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Doppel-12B-v2-Q6_K-GGUF --hf-file mistral-nemo-gutenberg-doppel-12b-v2-q6_k.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Doppel-12B-v2-Q6_K-GGUF --hf-file mistral-nemo-gutenberg-doppel-12b-v2-q6_k.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Doppel-12B-v2-Q6_K-GGUF --hf-file mistral-nemo-gutenberg-doppel-12b-v2-q6_k.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Mistral-Nemo-Gutenberg-Doppel-12B-v2-Q6_K-GGUF --hf-file mistral-nemo-gutenberg-doppel-12b-v2-q6_k.gguf -c 2048