File size: 1,681 Bytes
1b928ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- th
- en
license: apache-2.0
library_name: transformers
base_model:
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
---
<img src="./Tsunami.webp" alt="Tsunami Model" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Tsunami-1.0-7B-Instruct
**TSUNAMI**: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.
**TSUNAMI** full name was created by ChatGPT.
---
### infomation
**Tsunami-1.0-7B-Instruct** is Thai Large Language Model that fine-tuned from **Qwen2.5-7B** in Thai dataset.
---
### Author
- Pollakrit Lorprasertkul | [email protected]
---
### Prompt Template
This model uses `ChatML` prompt template:
```
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
````
---
### How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Tsunami-th/Tsunami-1.0-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
```
--- |