Text-to-Video
Diffusers
TuneAVideoPipeline
tune-a-video
NagaSaiAbhinay's picture
Fix links
c902eba
|
raw
history blame
1.97 kB
metadata
license: creativeml-openrail-m
base_model: nitrosocke/mo-di-diffusion
training_prompt: A bear is playing guitar.
tags:
  - tune-a-video
  - text-to-video
  - diffusers
inference: false

Tune-A-Video - Modern Disney

Model Description

This is a diffusers compatible checkpoint. When used with DiffusionPipeline, returns an instance of TuneAVideoPipeline

df-cpt is used to indicate that its a diffusers compatible equivalent of Tune-A-Video-library/mo-di-bear-guitar .

Samples

sample-500 Test prompt: "A princess playing a guitar, modern disney style"

Usage

import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_video
from PIL import Image


pretrained_model_path = "nitrosocke/mo-di-diffusion"

pipe = TuneAVideoPipeline.from_pretrained(
    "Tune-A-Video-library/df-cpt-mo-di-bear-guitar", torch_dtype=torch.float16
).to("cuda")

prompt = "A princess playing a guitar, modern disney style"
generator = torch.Generator(device="cuda").manual_seed(42)

video_frames = pipe(prompt, video_length=3, generator=generator, num_inference_steps=50, output_type="np").frames

# Saving to gif.
pil_frames = [Image.fromarray(frame) for frame in video_frames]
duration = len(pil_frames) / 8
pil_frames[0].save(
    "animation.gif",
    save_all=True,
    append_images=pil_frames[1:],  # append rest of the images
    duration=duration * 1000,  # in milliseconds
    loop=0,
)

# Saving to video
video_path = export_to_video(video_frames)

Related Papers:

  • Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
  • Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models