LiLT Model Read Here. This model being fine-tuned on English DocVQA
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from datasets import load_dataset
model_checkpoint = "TusharGoel/LiLT-Document-QA"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
model_predict = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
model_predict.eval()
dataset = load_dataset("nielsr/funsd", split="train")
example = dataset[0]
print(example)
question = "What is the Licensee Number?"
print(question)
words = example["words"]
boxes = example["bboxes"]
encoding = tokenizer(question, words, boxes = boxes, return_token_type_ids=True, return_tensors="pt")
word_ids = encoding.word_ids(0)
outputs = model_predict(**encoding)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits
start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()]
# print(start, end)
print(" ".join(words[start : end + 1]))
- Downloads last month
- 136
Inference API (serverless) has been turned off for this model.