invitrace-vit-base-food
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.7567
- Accuracy: 0.6960
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
5.0781 | 0.0803 | 100 | 5.0829 | 0.0433 |
4.9949 | 0.1605 | 200 | 4.9850 | 0.0857 |
4.9031 | 0.2408 | 300 | 4.8898 | 0.1674 |
4.7506 | 0.3210 | 400 | 4.7910 | 0.1959 |
4.718 | 0.4013 | 500 | 4.6958 | 0.2248 |
4.5883 | 0.4815 | 600 | 4.6033 | 0.2378 |
4.5255 | 0.5618 | 700 | 4.5165 | 0.2846 |
4.4352 | 0.6421 | 800 | 4.4288 | 0.3209 |
4.3072 | 0.7223 | 900 | 4.3482 | 0.3325 |
4.2581 | 0.8026 | 1000 | 4.2725 | 0.3693 |
4.1635 | 0.8828 | 1100 | 4.1993 | 0.3701 |
4.2149 | 0.9631 | 1200 | 4.1301 | 0.4036 |
3.9068 | 1.0433 | 1300 | 4.0589 | 0.4212 |
3.906 | 1.1236 | 1400 | 3.9937 | 0.4258 |
3.8074 | 1.2039 | 1500 | 3.9265 | 0.4401 |
3.846 | 1.2841 | 1600 | 3.8624 | 0.4636 |
3.7287 | 1.3644 | 1700 | 3.7921 | 0.4746 |
3.6785 | 1.4446 | 1800 | 3.7291 | 0.4939 |
3.6254 | 1.5249 | 1900 | 3.6768 | 0.5073 |
3.5377 | 1.6051 | 2000 | 3.6177 | 0.5001 |
3.4988 | 1.6854 | 2100 | 3.5622 | 0.5150 |
3.5051 | 1.7657 | 2200 | 3.5017 | 0.5133 |
3.4085 | 1.8459 | 2300 | 3.4415 | 0.5238 |
3.3978 | 1.9262 | 2400 | 3.3934 | 0.5348 |
3.3711 | 2.0064 | 2500 | 3.3364 | 0.5360 |
3.1439 | 2.0867 | 2600 | 3.2798 | 0.5449 |
3.1757 | 2.1669 | 2700 | 3.2288 | 0.5509 |
2.9329 | 2.2472 | 2800 | 3.1791 | 0.5521 |
2.8305 | 2.3274 | 2900 | 3.1239 | 0.5671 |
2.8984 | 2.4077 | 3000 | 3.0785 | 0.5609 |
3.0165 | 2.4880 | 3100 | 3.0352 | 0.5697 |
2.8105 | 2.5682 | 3200 | 2.9885 | 0.5820 |
2.7716 | 2.6485 | 3300 | 2.9396 | 0.5846 |
2.8448 | 2.7287 | 3400 | 2.8953 | 0.5884 |
2.6256 | 2.8090 | 3500 | 2.8594 | 0.5866 |
2.658 | 2.8892 | 3600 | 2.8157 | 0.5970 |
2.5392 | 2.9695 | 3700 | 2.7728 | 0.6008 |
2.4969 | 3.0498 | 3800 | 2.7359 | 0.6091 |
2.2975 | 3.1300 | 3900 | 2.6909 | 0.6187 |
2.1984 | 3.2103 | 4000 | 2.6527 | 0.6181 |
2.2088 | 3.2905 | 4100 | 2.6191 | 0.6217 |
2.147 | 3.3708 | 4200 | 2.5753 | 0.6235 |
2.0769 | 3.4510 | 4300 | 2.5453 | 0.6241 |
2.3726 | 3.5313 | 4400 | 2.5109 | 0.6362 |
2.0648 | 3.6116 | 4500 | 2.4840 | 0.6245 |
2.1653 | 3.6918 | 4600 | 2.4469 | 0.6366 |
1.8567 | 3.7721 | 4700 | 2.4177 | 0.6398 |
2.1076 | 3.8523 | 4800 | 2.3938 | 0.6386 |
2.0246 | 3.9326 | 4900 | 2.3539 | 0.6480 |
1.8459 | 4.0128 | 5000 | 2.3342 | 0.6432 |
1.7608 | 4.0931 | 5100 | 2.3074 | 0.6476 |
1.7977 | 4.1734 | 5200 | 2.2793 | 0.6516 |
1.7611 | 4.2536 | 5300 | 2.2519 | 0.6526 |
1.777 | 4.3339 | 5400 | 2.2320 | 0.6512 |
1.642 | 4.4141 | 5500 | 2.2008 | 0.6594 |
1.7745 | 4.4944 | 5600 | 2.1775 | 0.6592 |
1.6992 | 4.5746 | 5700 | 2.1538 | 0.6604 |
1.6188 | 4.6549 | 5800 | 2.1346 | 0.6627 |
1.6404 | 4.7352 | 5900 | 2.1158 | 0.6705 |
1.6618 | 4.8154 | 6000 | 2.0963 | 0.6671 |
1.4585 | 4.8957 | 6100 | 2.0718 | 0.6705 |
1.5439 | 4.9759 | 6200 | 2.0525 | 0.6719 |
1.3129 | 5.0562 | 6300 | 2.0362 | 0.6753 |
1.4422 | 5.1364 | 6400 | 2.0254 | 0.6723 |
1.3851 | 5.2167 | 6500 | 2.0113 | 0.6739 |
1.5312 | 5.2970 | 6600 | 1.9929 | 0.6785 |
1.4072 | 5.3772 | 6700 | 1.9740 | 0.6781 |
1.4402 | 5.4575 | 6800 | 1.9656 | 0.6721 |
1.4257 | 5.5377 | 6900 | 1.9462 | 0.6827 |
1.3762 | 5.6180 | 7000 | 1.9337 | 0.6853 |
1.2985 | 5.6982 | 7100 | 1.9214 | 0.6779 |
1.2026 | 5.7785 | 7200 | 1.9081 | 0.6831 |
1.2968 | 5.8587 | 7300 | 1.8945 | 0.6847 |
1.3511 | 5.9390 | 7400 | 1.8835 | 0.6901 |
1.1626 | 6.0193 | 7500 | 1.8732 | 0.6867 |
1.1289 | 6.0995 | 7600 | 1.8625 | 0.6903 |
1.1951 | 6.1798 | 7700 | 1.8548 | 0.6847 |
1.1203 | 6.2600 | 7800 | 1.8456 | 0.6893 |
1.0551 | 6.3403 | 7900 | 1.8386 | 0.6885 |
0.9919 | 6.4205 | 8000 | 1.8277 | 0.6914 |
1.1204 | 6.5008 | 8100 | 1.8207 | 0.6893 |
1.2432 | 6.5811 | 8200 | 1.8146 | 0.6895 |
1.0495 | 6.6613 | 8300 | 1.8016 | 0.6920 |
1.0898 | 6.7416 | 8400 | 1.8014 | 0.6911 |
1.1495 | 6.8218 | 8500 | 1.7988 | 0.6948 |
1.2172 | 6.9021 | 8600 | 1.7952 | 0.6895 |
1.063 | 6.9823 | 8700 | 1.7848 | 0.6968 |
1.0807 | 7.0626 | 8800 | 1.7835 | 0.6926 |
0.9908 | 7.1429 | 8900 | 1.7796 | 0.6944 |
1.0848 | 7.2231 | 9000 | 1.7796 | 0.6946 |
1.0682 | 7.3034 | 9100 | 1.7703 | 0.6922 |
0.9353 | 7.3836 | 9200 | 1.7686 | 0.6948 |
1.0604 | 7.4639 | 9300 | 1.7650 | 0.6932 |
0.9961 | 7.5441 | 9400 | 1.7639 | 0.6938 |
1.096 | 7.6244 | 9500 | 1.7624 | 0.6964 |
0.9436 | 7.7047 | 9600 | 1.7599 | 0.6952 |
1.0565 | 7.7849 | 9700 | 1.7591 | 0.6954 |
0.9172 | 7.8652 | 9800 | 1.7579 | 0.6958 |
1.0549 | 7.9454 | 9900 | 1.7567 | 0.6960 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Tuu-invitrace/invitrace-vit-base-food
Base model
google/vit-base-patch16-224-in21k