vit-invitrace-food
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1286
- Accuracy: 0.9684
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6128 | 0.2132 | 100 | 0.4694 | 0.9044 |
0.3905 | 0.4264 | 200 | 0.5236 | 0.8484 |
0.4315 | 0.6397 | 300 | 0.3988 | 0.8884 |
0.4028 | 0.8529 | 400 | 0.2213 | 0.9432 |
0.1097 | 1.0661 | 500 | 0.2963 | 0.92 |
0.1883 | 1.2793 | 600 | 0.2047 | 0.9448 |
0.137 | 1.4925 | 700 | 0.1695 | 0.9548 |
0.2309 | 1.7058 | 800 | 0.2159 | 0.9384 |
0.094 | 1.9190 | 900 | 0.1987 | 0.9452 |
0.0282 | 2.1322 | 1000 | 0.1861 | 0.9528 |
0.0231 | 2.3454 | 1100 | 0.1944 | 0.9476 |
0.0409 | 2.5586 | 1200 | 0.1625 | 0.96 |
0.0386 | 2.7719 | 1300 | 0.1486 | 0.9616 |
0.0249 | 2.9851 | 1400 | 0.1736 | 0.9572 |
0.012 | 3.1983 | 1500 | 0.1469 | 0.9624 |
0.0304 | 3.4115 | 1600 | 0.1405 | 0.9644 |
0.0052 | 3.6247 | 1700 | 0.1498 | 0.9636 |
0.0247 | 3.8380 | 1800 | 0.1286 | 0.9684 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Tuu-invitrace/vit-invitrace-food
Base model
google/vit-base-patch16-224-in21k