Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)

Mistral7B-PairRM-SPPO-Iter2

This model was developed using Self-Play Preference Optimization at iteration 2, based on the mistralai/Mistral-7B-Instruct-v0.2 architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.

This is the model reported in the paper , with K=5 (generate 5 responses per iteration). We attached the Arena-Hard eval results in this model page.

Links to Other Models

Model Description

  • Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: Apache-2.0
  • Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2

AlpacaEval Leaderboard Evaluation Results

Model LC. Win Rate Win Rate Avg. Length
Mistral7B-PairRM-SPPO Iter 1 24.79 23.51 1855
Mistral7B-PairRM-SPPO Iter 2 26.89 27.62 2019
Mistral7B-PairRM-SPPO Iter 3 28.53 31.02 2163
Mistral7B-PairRM-SPPO Iter 1 (best-of-16) 28.71 27.77 1901
Mistral7B-PairRM-SPPO Iter 2 (best-of-16) 31.23 32.12 2035
Mistral7B-PairRM-SPPO Iter 3 (best-of-16) 32.13 34.94 2174

Arena-Hard Evaluation Results

Model Score 95% CI average # Tokens
Mistral7B-PairRM-SPPO-Iter3 23.3 (-1.8, 1.8) 578

Open LLM Leaderboard Evaluation Results

Results are reported by using lm-evaluation-harness v0.4.1

arc_challenge truthfulqa_mc2 winogrande gsm8k hellaswag mmlu average
Mistral7B-PairRM-SPPO Iter 1 65.02 69.4 77.82 43.82 85.11 58.84 66.67
Mistral7B-PairRM-SPPO Iter 2 65.53 69.55 77.03 44.35 85.29 58.72 66.75
Mistral7B-PairRM-SPPO Iter 3 65.36 69.97 76.8 42.68 85.16 58.45 66.4

MT-Bench Evaluation Results

1st Turn 2nd Turn Average
Mistral7B-PairRM-SPPO Iter 1 7.63 6.79 7.21
Mistral7B-PairRM-SPPO Iter 2 7.90 7.08 7.49
Mistral7B-PairRM-SPPO Iter 3 7.84 7.34 7.59

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • eta: 1000
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 1
  • seed: 42
  • distributed_type: deepspeed_zero3
  • num_devices: 8
  • optimizer: RMSProp
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_train_epochs: 18.0 (stop at epoch=1.0)

Citation

@misc{wu2024self,
      title={Self-Play Preference Optimization for Language Model Alignment}, 
      author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
      year={2024},
      eprint={2405.00675},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Downloads last month
6,486
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2

Quantizations
2 models

Dataset used to train UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2

Space using UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2 1

Collection including UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2