DanielMarquez's picture
End of training
666d3f0 verified
|
raw
history blame
1.7 kB
---
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper openai-whisper-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper openai-whisper-base
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the llamadas ecu911 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3456
- Wer: 68.6607
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.0578 | 2.6596 | 500 | 1.2313 | 73.1571 |
| 0.409 | 5.3191 | 1000 | 1.2251 | 71.8255 |
| 0.2402 | 7.9787 | 1500 | 1.2967 | 65.2451 |
| 0.1526 | 10.6383 | 2000 | 1.3456 | 68.6607 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1