unsalora / README.md
UNSAGroupe's picture
Update README.md
af61ed1 verified
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: in the style of <s0>1<s1>
output:
url: image-0.png
- text: in the style of <s0>2<s1>
output:
url: image-1.png
- text: in the style of <s0>3<s1>
output:
url: image-2.png
- text: in the style of <s0>4<s1>
output:
url: image-3.png
- text: in the style of <s0>5<s1>
output:
url: image-4.png
- text: in the style of <s0>6<s1>
output:
url: image-5.png
- text: in the style of <s0>7<s1>
output:
url: image-6.png
- text: in the style of <s0>8<s1>
output:
url: image-7.png
- text: in the style of <s0>9<s1>
output:
url: image-8.png
- text: in the style of <s0>10<s1>
output:
url: image-9.png
- text: in the style of <s0>11<s1>
output:
url: image-10.png
- text: in the style of <s0>12<s1>
output:
url: image-11.png
- text: in the style of <s0>13<s1>
output:
url: image-12.png
- text: in the style of <s0>14<s1>
output:
url: image-13.png
- text: in the style of <s0>15<s1>
output:
url: image-14.png
- text: in the style of <s0>16<s1>
output:
url: image-15.png
- text: in the style of <s0>17<s1>
output:
url: image-16.png
- text: in the style of <s0>18<s1>
output:
url: image-17.png
- text: in the style of <s0>19<s1>
output:
url: image-18.png
- text: in the style of <s0>20<s1>
output:
url: image-19.png
- text: in the style of <s0>21<s1>
output:
url: image-20.png
- text: in the style of <s0>22<s1>
output:
url: image-21.png
- text: in the style of <s0>23<s1>
output:
url: image-22.png
- text: in the style of <s0>24<s1>
output:
url: image-23.png
- text: in the style of <s0>25<s1>
output:
url: image-24.png
- text: in the style of <s0>26<s1>
output:
url: image-25.png
- text: in the style of <s0>27<s1>
output:
url: image-26.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: in the style of <s0><s1>
license: openrail++
---
# SDXL LoRA DreamBooth - UNSAGroupe/unsalora
<Gallery />
## Model description
### These are UNSAGroupe/unsalora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`unsalora.safetensors` here 💾](/UNSAGroupe/unsalora/blob/main/unsalora.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:unsalora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`unsalora_emb.safetensors` here 💾](/UNSAGroupe/unsalora/blob/main/unsalora_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `unsalora_emb` to your prompt. For example, `in the style of unsalora_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('UNSAGroupe/unsalora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='UNSAGroupe/unsalora', filename='unsalora_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('in the style of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/UNSAGroupe/unsalora/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.