File size: 25,869 Bytes
4be750a f2c9e91 4be750a 9f2b199 4be750a 9f2b199 4be750a f2c9e91 4be750a 9f2b199 4be750a 9f2b199 4be750a f2c9e91 4be750a ce9fc6c 4be750a ce9fc6c 4be750a ce9fc6c 4be750a ce9fc6c 4be750a ce9fc6c f2c9e91 ce9fc6c 7dc8863 ce9fc6c 4be750a ce9fc6c 4be750a ce9fc6c 4be750a ce9fc6c 4be750a f2c9e91 4be750a 9f2b199 4be750a f2c9e91 4be750a 9f2b199 4be750a 9f2b199 4be750a 9f2b199 4be750a 9f2b199 ce9fc6c 9f2b199 4be750a 50a9093 f2c9e91 4be750a 50a9093 4be750a ce9fc6c 50a9093 4be750a 7dc8863 9f2b199 50a9093 7dc8863 50a9093 ce9fc6c 50a9093 ce9fc6c 50a9093 7dc8863 50a9093 4be750a 9f2b199 ce9fc6c 50a9093 ce9fc6c 50a9093 506f5a9 50a9093 4be750a 50a9093 4be750a 50a9093 4be750a ce9fc6c 4be750a 50a9093 4be750a 9f2b199 4be750a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run pre-trained DeepSeek Coder 1.3B Model on Chat-GPT 4o generated dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First load dataset into pandas dataframe"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total dataset examples: 1044\n",
"\n",
"\n",
"What was the combined rebound total for the Toronto Raptors and Brooklyn Nets in their highest scoring game against each other?\n",
"SELECT MAX(g.pts_home + g.pts_away) AS total_points, g.reb_home + g.reb_away AS total_rebounds FROM game g WHERE (g.team_name_home = 'Toronto Raptors' AND g.team_name_away = 'Brooklyn Nets') OR (g.team_name_home = 'Brooklyn Nets' AND g.team_name_away = 'Toronto Raptors') ORDER BY total_points DESC LIMIT 1;\n",
"272.0 | 101.0 \n"
]
}
],
"source": [
"import pandas as pd \n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n",
"# Load dataset and check length\n",
"df = pd.read_csv(\"./train-data/sql_train.tsv\", sep='\\t')\n",
"print(\"Total dataset examples: \" + str(len(df)))\n",
"print(\"\\n\")\n",
"\n",
"# Test sampling\n",
"sample = df.sample(n=1)\n",
"print(sample[\"natural_query\"].values[0])\n",
"print(sample[\"sql_query\"].values[0])\n",
"print(sample[\"result\"].values[0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load pre-trained DeepSeek model using transformers and pytorch packages"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"import torch\n",
"\n",
"# Set device to cuda if available, otherwise CPU\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"# Load model and tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"./deepseek-coder-1.3b-instruct\")\n",
"model = AutoModelForCausalLM.from_pretrained(\"./deepseek-coder-1.3b-instruct\", torch_dtype=torch.bfloat16, device_map=device) \n",
"model.generation_config.pad_token_id = tokenizer.pad_token_id"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create prompt to setup the model for better performance"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"input_text = \"\"\"You are an AI assistant that converts natural language queries into valid SQLite queries.\n",
"Database Schema and Explanations\n",
"\n",
"team Table\n",
"Stores information about NBA teams.\n",
"CREATE TABLE IF NOT EXISTS \"team\" (\n",
" \"id\" TEXT PRIMARY KEY, -- Unique identifier for the team\n",
" \"full_name\" TEXT, -- Full official name of the team (e.g., \"Los Angeles Lakers\")\n",
" \"abbreviation\" TEXT, -- Shortened team name (e.g., \"LAL\")\n",
" \"nickname\" TEXT, -- Commonly used nickname for the team (e.g., \"Lakers\")\n",
" \"city\" TEXT, -- City where the team is based\n",
" \"state\" TEXT, -- State where the team is located\n",
" \"year_founded\" REAL -- Year the team was established\n",
");\n",
"\n",
"game Table\n",
"Contains detailed statistics for each NBA game, including home and away team performance.\n",
"CREATE TABLE IF NOT EXISTS \"game\" (\n",
" \"season_id\" TEXT, -- Season identifier, formatted as \"2YYYY\" (e.g., \"21970\" for the 1970 season)\n",
" \"team_id_home\" TEXT, -- ID of the home team (matches \"id\" in team table)\n",
" \"team_abbreviation_home\" TEXT, -- Abbreviation of the home team\n",
" \"team_name_home\" TEXT, -- Full name of the home team\n",
" \"game_id\" TEXT PRIMARY KEY, -- Unique identifier for the game\n",
" \"game_date\" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)\n",
" \"matchup_home\" TEXT, -- Matchup details including opponent (e.g., \"LAL vs. BOS\")\n",
" \"wl_home\" TEXT, -- \"W\" if the home team won, \"L\" if they lost\n",
" \"min\" INTEGER, -- Total minutes played in the game\n",
" \"fgm_home\" REAL, -- Field goals made by the home team\n",
" \"fga_home\" REAL, -- Field goals attempted by the home team\n",
" \"fg_pct_home\" REAL, -- Field goal percentage of the home team\n",
" \"fg3m_home\" REAL, -- Three-point field goals made by the home team\n",
" \"fg3a_home\" REAL, -- Three-point attempts by the home team\n",
" \"fg3_pct_home\" REAL, -- Three-point field goal percentage of the home team\n",
" \"ftm_home\" REAL, -- Free throws made by the home team\n",
" \"fta_home\" REAL, -- Free throws attempted by the home team\n",
" \"ft_pct_home\" REAL, -- Free throw percentage of the home team\n",
" \"oreb_home\" REAL, -- Offensive rebounds by the home team\n",
" \"dreb_home\" REAL, -- Defensive rebounds by the home team\n",
" \"reb_home\" REAL, -- Total rebounds by the home team\n",
" \"ast_home\" REAL, -- Assists by the home team\n",
" \"stl_home\" REAL, -- Steals by the home team\n",
" \"blk_home\" REAL, -- Blocks by the home team\n",
" \"tov_home\" REAL, -- Turnovers by the home team\n",
" \"pf_home\" REAL, -- Personal fouls by the home team\n",
" \"pts_home\" REAL, -- Total points scored by the home team\n",
" \"plus_minus_home\" INTEGER, -- Plus/minus rating for the home team\n",
" \"video_available_home\" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)\n",
" \"team_id_away\" TEXT, -- ID of the away team\n",
" \"team_abbreviation_away\" TEXT, -- Abbreviation of the away team\n",
" \"team_name_away\" TEXT, -- Full name of the away team\n",
" \"matchup_away\" TEXT, -- Matchup details from the away team’s perspective\n",
" \"wl_away\" TEXT, -- \"W\" if the away team won, \"L\" if they lost\n",
" \"fgm_away\" REAL, -- Field goals made by the away team\n",
" \"fga_away\" REAL, -- Field goals attempted by the away team\n",
" \"fg_pct_away\" REAL, -- Field goal percentage of the away team\n",
" \"fg3m_away\" REAL, -- Three-point field goals made by the away team\n",
" \"fg3a_away\" REAL, -- Three-point attempts by the away team\n",
" \"fg3_pct_away\" REAL, -- Three-point field goal percentage of the away team\n",
" \"ftm_away\" REAL, -- Free throws made by the away team\n",
" \"fta_away\" REAL, -- Free throws attempted by the away team\n",
" \"ft_pct_away\" REAL, -- Free throw percentage of the away team\n",
" \"oreb_away\" REAL, -- Offensive rebounds by the away team\n",
" \"dreb_away\" REAL, -- Defensive rebounds by the away team\n",
" \"reb_away\" REAL, -- Total rebounds by the away team\n",
" \"ast_away\" REAL, -- Assists by the away team\n",
" \"stl_away\" REAL, -- Steals by the away team\n",
" \"blk_away\" REAL, -- Blocks by the away team\n",
" \"tov_away\" REAL, -- Turnovers by the away team\n",
" \"pf_away\" REAL, -- Personal fouls by the away team\n",
" \"pts_away\" REAL, -- Total points scored by the away team\n",
" \"plus_minus_away\" INTEGER, -- Plus/minus rating for the away team\n",
" \"video_available_away\" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)\n",
" \"season_type\" TEXT -- Regular season or playoffs\n",
");\n",
"\n",
"other_stats Table\n",
"Stores additional game statistics, linked to the game table via game_id.\n",
"CREATE TABLE IF NOT EXISTS \"other_stats\" (\n",
" \"game_id\" TEXT, -- Unique game identifier (links to \"game\" table)\n",
" \"league_id\" TEXT, -- League identifier\n",
" \"team_id_home\" TEXT, -- Home team identifier\n",
" \"team_abbreviation_home\" TEXT, -- Home team abbreviation\n",
" \"team_city_home\" TEXT, -- Home team city\n",
" \"pts_paint_home\" INTEGER, -- Points in the paint by the home team\n",
" \"pts_2nd_chance_home\" INTEGER, -- Second chance points by the home team\n",
" \"pts_fb_home\" INTEGER, -- Fast break points by the home team\n",
" \"largest_lead_home\" INTEGER,-- Largest lead by the home team\n",
" \"lead_changes\" INTEGER, -- Number of lead changes in the game\n",
" \"times_tied\" INTEGER, -- Number of times the score was tied\n",
" \"team_turnovers_home\" INTEGER, -- Home team turnovers\n",
" \"total_turnovers_home\" INTEGER, -- Total turnovers in the game\n",
" \"team_rebounds_home\" INTEGER, -- Home team rebounds\n",
" \"pts_off_to_home\" INTEGER, -- Points off turnovers by the home team\n",
" \"team_id_away\" TEXT, -- Away team identifier\n",
" \"pts_paint_away\" INTEGER, -- Points in the paint by the away team\n",
" \"pts_2nd_chance_away\" INTEGER, -- Second chance points by the away team\n",
" \"pts_fb_away\" INTEGER, -- Fast break points by the away team\n",
" \"largest_lead_away\" INTEGER,-- Largest lead by the away team\n",
" \"team_turnovers_away\" INTEGER, -- Away team turnovers\n",
" \"total_turnovers_away\" INTEGER, -- Total turnovers in the game\n",
" \"team_rebounds_away\" INTEGER, -- Away team rebounds\n",
" \"pts_off_to_away\" INTEGER -- Points off turnovers by the away team\n",
");\n",
"\n",
"\n",
"Team Name Information\n",
"In the plaintext user questions, only the full team names will be used, but in the queries you may use the full team names or the abbreviations. \n",
"The full team names can be used with the game table, while the abbreviations should be used with the other_stats table.\n",
"Notice they are separated by the | character in the following list:\n",
"\n",
"Atlanta Hawks|ATL\n",
"Boston Celtics|BOS\n",
"Cleveland Cavaliers|CLE\n",
"New Orleans Pelicans|NOP\n",
"Chicago Bulls|CHI\n",
"Dallas Mavericks|DAL\n",
"Denver Nuggets|DEN\n",
"Golden State Warriors|GSW\n",
"Houston Rockets|HOU\n",
"Los Angeles Clippers|LAC\n",
"Los Angeles Lakers|LAL\n",
"Miami Heat|MIA\n",
"Milwaukee Bucks|MIL\n",
"Minnesota Timberwolves|MIN\n",
"Brooklyn Nets|BKN\n",
"New York Knicks|NYK\n",
"Orlando Magic|ORL\n",
"Indiana Pacers|IND\n",
"Philadelphia 76ers|PHI\n",
"Phoenix Suns|PHX\n",
"Portland Trail Blazers|POR\n",
"Sacramento Kings|SAC\n",
"San Antonio Spurs|SAS\n",
"Oklahoma City Thunder|OKC\n",
"Toronto Raptors|TOR\n",
"Utah Jazz|UTA\n",
"Memphis Grizzlies|MEM\n",
"Washington Wizards|WAS\n",
"Detroit Pistons|DET\n",
"Charlotte Hornets|CHA\n",
"\n",
"\n",
"\n",
"Query Guidelines\n",
"Use team_name_home and team_name_away to match teams.\n",
"\n",
"To filter by season, use season_id = '2YYYY'.\n",
"\n",
"Example: To get games from 2005, use season_id = '22005'. To get games from 1972, use season_id = \"21972\". To get games from 2015, use season_id = \"22015\".\n",
"\n",
"The game_id column links the game and other_stats tables.\n",
"\n",
"Ensure queries return relevant columns and avoid unnecessary joins.\n",
"\n",
"Example User Requests and SQLite Queries\n",
"Request:\n",
"\"What is the most points the Los Angeles Lakers have ever scored at home?\"\n",
"SQLite:\n",
"SELECT MAX(pts_home) \n",
"FROM game \n",
"WHERE team_name_home = 'Los Angeles Lakers';\n",
"\n",
"Request:\n",
"\"How many points did the Miami Heat score on January 10, 2010?\"\n",
"SQLite:\n",
"SELECT team_name_home, pts_home, team_name_away, pts_away \n",
"FROM game \n",
"WHERE DATE(game_date) = '2010-01-10' \n",
"AND (team_name_home = 'Miami Heat' OR team_name_away = 'Miami Heat');\n",
"\n",
"Request:\n",
"\"Which team won the most home games in the 2000 season?\"\n",
"SQLite:\n",
"SELECT team_name_home, COUNT(*) AS wins\n",
"FROM game\n",
"WHERE wl_home = 'W' AND season_id = '22000'\n",
"GROUP BY team_name_home\n",
"ORDER BY wins DESC\n",
"LIMIT 1;\n",
"\n",
"Generate only the SQLite query prefaced by SQLite: and no other text, do not output an explanation of the query. Now generate an SQLite query for the following question: \"\"\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test model performance on a single example"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SQLite:\n",
"SELECT SUM(reb_home + reb_away) AS combined_rebounds\n",
"FROM game\n",
"WHERE (team_name_home = 'Toronto Raptors' AND team_name_away = 'Brooklyn Nets')\n",
"OR (team_name_home = 'Brooklyn Nets' AND team_name_away = 'Toronto Raptors');\n",
"\n"
]
}
],
"source": [
"# Create message with sample query and run model\n",
"message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
"inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
"# Print output\n",
"query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"print(query_output)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test sample output on sqlite3 database"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cleaned\n",
"(4350.0,)\n"
]
}
],
"source": [
"import sqlite3 as sql\n",
"\n",
"# Create connection to sqlite3 database\n",
"connection = sql.connect('./nba-data/nba.sqlite')\n",
"cursor = connection.cursor()\n",
"\n",
"# Execute query from model output and print result\n",
"if query_output[0:7] == \"SQLite:\":\n",
" print(\"cleaned\")\n",
" query = query_output[7:]\n",
"elif query_output[0:4] == \"SQL:\":\n",
" query = query_output[4:]\n",
"else:\n",
" query = query_output\n",
"\n",
"try:\n",
" cursor.execute(query)\n",
" rows = cursor.fetchall()\n",
" for row in rows:\n",
" print(row)\n",
"except:\n",
" pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create function to compare output to ground truth result from examples"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"What was the three-point shooting percentage for the Los Angeles Clippers in games against the Los Angeles Lakers?\n",
"SELECT AVG( CASE WHEN team_name_home = 'LA Clippers' THEN fg3_pct_home ELSE fg3_pct_away END ) AS avg_3pt_percentage FROM game WHERE (team_name_home = 'LA Clippers' AND team_name_away = 'Los Angeles Lakers') OR (team_name_home = 'Los Angeles Lakers' AND team_name_away = 'LA Clippers');\n",
"0.3734705882\n",
"SQLite:\n",
"SELECT team_name_home, team_name_away, AVG(fg3_pct_home) AS three_point_percentage\n",
"FROM game\n",
"WHERE team_name_home = 'Los Angeles Clippers' AND team_name_away = 'Los Angeles Lakers'\n",
"GROUP BY team_name_home, team_name_away;\n",
"\n",
"Statement valid? True\n",
"SQLite matched? False\n",
"Result matched? True\n"
]
}
],
"source": [
"import math\n",
"\n",
"def compare_result(sample_query, sample_result, query_output):\n",
" # Clean model output to only have the query output\n",
" if query_output[0:7] == \"SQLite:\":\n",
" query = query_output[7:]\n",
" elif query_output[0:4] == \"SQL:\":\n",
" query = query_output[4:]\n",
" else:\n",
" query = query_output\n",
" \n",
" # Try to execute query, if it fails, then this is a failure of the model\n",
" try:\n",
" # Execute query and obtain result\n",
" cursor.execute(query)\n",
" rows = cursor.fetchall()\n",
"\n",
" # Strip all whitespace before comparing queries since there may be differences in spacing, newlines, tabs, etc.\n",
" query = query.replace(\" \", \"\").replace(\"\\n\", \"\").replace(\"\\t\", \"\")\n",
" sample_query = sample_query.replace(\" \", \"\").replace(\"\\n\", \"\").replace(\"\\t\", \"\")\n",
" query_match = (query == sample_query)\n",
"\n",
" # If the queries match, the results clearly also match\n",
" if query_match:\n",
" return True, True, True\n",
"\n",
" # Check if this is a multi-line query\n",
" if \"|\" in sample_result or \"(\" in sample_result:\n",
" #print(rows)\n",
" # Create list of results by stripping separators and splitting on them\n",
" if \"(\" in sample_result:\n",
" sample_result = sample_result.replace(\"(\", \"\").replace(\")\", \"\")\n",
" result_list = sample_result.split(\",\") \n",
" else:\n",
" result_list = sample_result.split(\"|\") \n",
"\n",
" # Strip all results in list\n",
" for i in range(len(result_list)):\n",
" result_list[i] = str(result_list[i]).strip()\n",
" \n",
" # Loop through model result and see if it matches training example\n",
" result = False\n",
" for row in rows:\n",
" for r in row:\n",
" for res in result_list:\n",
" try:\n",
" if math.isclose(float(r), float(res), abs_tol=0.5):\n",
" return True, query_match, True\n",
" except:\n",
" if r in res or res in r:\n",
" return True, query_match, True\n",
" \n",
" # Check if the model returned a sum of examples as opposed to the whole thing\n",
" if len(rows) == 1:\n",
" for r in rows[0]:\n",
" if r == str(len(result_list)):\n",
" return True, query_match, True\n",
" \n",
" return True, query_match, result\n",
" # Else the sample result is a single value or string\n",
" else:\n",
" #print(rows)\n",
" result = False\n",
" # Loop through model result and see if it contains the sample result\n",
" for row in rows:\n",
" for r in row:\n",
" # Check by string\n",
" if str(r) in str(sample_result):\n",
" try:\n",
" if math.isclose(float(r), float(sample_result), abs_tol=0.5):\n",
" return True, query_match, True\n",
" except:\n",
" return True, query_match, True\n",
" # Check by number, using try incase the cast as float fails\n",
" try:\n",
" if math.isclose(float(r), float(sample_result), abs_tol=0.5):\n",
" return True, query_match, True\n",
" except:\n",
" pass\n",
"\n",
" # Check if the model returned a list of examples instead of a total sum (both acceptable)\n",
" try:\n",
" if len(rows) > 1 and len(rows) == int(sample_result):\n",
" return True, query_match, True\n",
" if len(rows[0]) > 1 and rows[0][1] is not None and len(rows[0]) == int(sample_result):\n",
" return True, query_match, True\n",
" except:\n",
" pass\n",
"\n",
" # Compare results and return\n",
" return True, query_match, result\n",
" except:\n",
" return False, False, False\n",
"\n",
"# Obtain sample\n",
"sample = df.sample(n=1)\n",
"print(sample[\"natural_query\"].values[0])\n",
"print(sample[\"sql_query\"].values[0])\n",
"print(sample[\"result\"].values[0])\n",
"\n",
"# Create message with sample query and run model\n",
"message=[{ 'role': 'user', 'content': input_text + sample[\"natural_query\"].values[0]}]\n",
"inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
"# Print output\n",
"query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"print(query_output)\n",
"\n",
"result = compare_result(sample[\"sql_query\"].values[0], sample[\"result\"].values[0], query_output)\n",
"print(\"Statement valid? \" + str(result[0]))\n",
"print(\"SQLite matched? \" + str(result[1]))\n",
"print(\"Result matched? \" + str(result[2]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create function to evaluate pretrained model on full datasets"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Less than 90 results:\n",
"Percent valid: 0.0653061224489796\n",
"Percent SQLite matched: 0.00816326530612245\n",
"Percent result matched: 0.024489795918367346\n"
]
}
],
"source": [
"def run_evaluation(nba_df, title):\n",
" counter = 0\n",
" num_valid = 0\n",
" num_sql_matched = 0\n",
" num_result_matched = 0\n",
" for index, row in nba_df.iterrows():\n",
" # Create message with sample query and run model\n",
" message=[{ 'role': 'user', 'content': input_text + row[\"natural_query\"]}]\n",
" inputs = tokenizer.apply_chat_template(message, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
" outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
"\n",
" # Obtain output\n",
" query_output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n",
"\n",
" # Evaluate model result\n",
" valid, sql_matched, result_matched = compare_result(row[\"sql_query\"], row[\"result\"], query_output)\n",
" if valid:\n",
" num_valid += 1\n",
" if sql_matched:\n",
" num_sql_matched += 1\n",
" if result_matched:\n",
" num_result_matched += 1\n",
"\n",
" # Break after predefined number of examples\n",
" counter += 1\n",
" if counter % 50 == 0:\n",
" print(\"Completed \" + str(counter))\n",
" elif counter == 20:\n",
" break\n",
"\n",
" # Print evaluation results\n",
" print(title + \" results:\")\n",
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
"\n",
"less_than_90_df = pd.read_csv(\"./train-data/less_than_90.tsv\", sep='\\t')\n",
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
"\n",
"# Run evaluation on all training data\n",
"#run_evaluation(df, \"All training data\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluate on less than 90 dataset"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|