|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import time |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
""" |
|
tokenizer = AutoTokenizer.from_pretrained(".") |
|
model = AutoModelForCausalLM.from_pretrained(".").cuda() |
|
input_text = "#If I have a SQL table called people with columns 'name, date, count' generate a SQL query to get all peoples names" |
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_length=128) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
""" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("./deepseek-coder-1.3b-instruct") |
|
model = AutoModelForCausalLM.from_pretrained("./deepseek-coder-1.3b-instruct", torch_dtype=torch.bfloat16, device_map=device) |
|
|
|
|
|
|
|
messages=[ |
|
{ 'role': 'user', 'content': "If I have a SQL table called people with columns 'name, date, count' generate a SQL query to get all peoples names. Output only the SQL query no other text"} |
|
] |
|
|
|
start_time = time.time() |
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
end_time = time.time() |
|
|
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
|
|
print("Execution time:") |
|
print(end_time - start_time) |