Initial attempt at fine-tuning using LoRA with basic cross-entropy loss
Browse files- finetune_model.ipynb +524 -0
finetune_model.ipynb
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Finetune DeepSeek Coder 1.3B for NBA Kaggle Database SQLite Generation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"## First load data and convert to Dataset object tokenized by the DeepSeek model"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stderr",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
27 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"name": "stdout",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"WARNING:tensorflow:From c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
35 |
+
"\n",
|
36 |
+
"Total dataset examples: 1044\n",
|
37 |
+
" natural_query \\\n",
|
38 |
+
"0 Which NBA teams were established after the yea... \n",
|
39 |
+
"1 What is the most points the Los Angeles Lakers... \n",
|
40 |
+
"2 What is the second-highest number of points th... \n",
|
41 |
+
"3 How many home games did the Golden State Warri... \n",
|
42 |
+
"4 What is the average number of assists by the B... \n",
|
43 |
+
"\n",
|
44 |
+
" sql_query result \n",
|
45 |
+
"0 SELECT full_name FROM team WHERE year_founded ... New Orleans Pelicans \n",
|
46 |
+
"1 SELECT MAX(pts_home) FROM game WHERE team_nam... 162 \n",
|
47 |
+
"2 SELECT pts_home FROM game WHERE team_name_home... 156 \n",
|
48 |
+
"3 SELECT COUNT(*) FROM game WHERE team_abbrevi... 29 \n",
|
49 |
+
"4 SELECT AVG(ast_home) FROM game WHERE team_ab... 26.51355662 \n"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"name": "stderr",
|
54 |
+
"output_type": "stream",
|
55 |
+
"text": [
|
56 |
+
"Map: 100%|██████████| 1044/1044 [00:00<00:00, 4433.07 examples/s]"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"name": "stdout",
|
61 |
+
"output_type": "stream",
|
62 |
+
"text": [
|
63 |
+
"939\n",
|
64 |
+
"105\n"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"name": "stderr",
|
69 |
+
"output_type": "stream",
|
70 |
+
"text": [
|
71 |
+
"\n"
|
72 |
+
]
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"source": [
|
76 |
+
"import pandas as pd\n",
|
77 |
+
"import torch\n",
|
78 |
+
"from datasets import Dataset\n",
|
79 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, BitsAndBytesConfig\n",
|
80 |
+
"from torch.utils.data import DataLoader\n",
|
81 |
+
"from peft import LoraConfig, get_peft_model, TaskType\n",
|
82 |
+
"import os\n",
|
83 |
+
"\n",
|
84 |
+
"# Load dataset\n",
|
85 |
+
"df = pd.read_csv(\"./train-data/sql_train.tsv\", sep='\\t')\n",
|
86 |
+
"\n",
|
87 |
+
"# Display dataset info\n",
|
88 |
+
"print(f\"Total dataset examples: {len(df)}\")\n",
|
89 |
+
"print(df.head())\n",
|
90 |
+
"\n",
|
91 |
+
"# Load tokenizer\n",
|
92 |
+
"model_name = \"./deepseek-coder-1.3b-instruct\"\n",
|
93 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
94 |
+
"\n",
|
95 |
+
"# Preprocessing function\n",
|
96 |
+
"def preprocess_function(examples):\n",
|
97 |
+
" \"\"\"\n",
|
98 |
+
" Tokenizes input natural language queries and corresponding SQL queries.\n",
|
99 |
+
" \"\"\"\n",
|
100 |
+
" inputs = [\"Translate to SQL: \" + q for q in examples[\"natural_query\"]]\n",
|
101 |
+
" targets = examples[\"sql_query\"]\n",
|
102 |
+
"\n",
|
103 |
+
" model_inputs = tokenizer(inputs, padding=\"max_length\", truncation=True, max_length=256)\n",
|
104 |
+
" labels = tokenizer(targets, padding=\"max_length\", truncation=True, max_length=256)\n",
|
105 |
+
"\n",
|
106 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
107 |
+
" return model_inputs\n",
|
108 |
+
"\n",
|
109 |
+
"# Convert to Hugging Face Dataset\n",
|
110 |
+
"dataset = Dataset.from_pandas(df)\n",
|
111 |
+
"\n",
|
112 |
+
"# Apply tokenization\n",
|
113 |
+
"tokenized_dataset = dataset.map(preprocess_function, batched=True)\n",
|
114 |
+
"\n",
|
115 |
+
"# Split into train/validation\n",
|
116 |
+
"split = int(0.9 * len(tokenized_dataset)) # 90% train, 10% validation\n",
|
117 |
+
"train_dataset = tokenized_dataset.select(range(split))\n",
|
118 |
+
"val_dataset = tokenized_dataset.select(range(split, len(tokenized_dataset)))\n",
|
119 |
+
"\n",
|
120 |
+
"print(len(train_dataset))\n",
|
121 |
+
"print(len(val_dataset))"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "markdown",
|
126 |
+
"metadata": {},
|
127 |
+
"source": [
|
128 |
+
"## Load model and define training arguments"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 2,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"name": "stdout",
|
138 |
+
"output_type": "stream",
|
139 |
+
"text": [
|
140 |
+
"trainable params: 6,291,456 || all params: 1,352,763,392 || trainable%: 0.4651\n"
|
141 |
+
]
|
142 |
+
}
|
143 |
+
],
|
144 |
+
"source": [
|
145 |
+
"# Enable 8-bit quantization for lower memory usage\n",
|
146 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
147 |
+
" load_in_8bit=True, \n",
|
148 |
+
" bnb_8bit_compute_dtype=torch.float16\n",
|
149 |
+
")\n",
|
150 |
+
"\n",
|
151 |
+
"# Load model with quantization\n",
|
152 |
+
"#device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
153 |
+
"device_name = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
|
154 |
+
"device = torch.device(device_name)\n",
|
155 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
156 |
+
" model_name, \n",
|
157 |
+
" quantization_config=bnb_config,\n",
|
158 |
+
" device_map=device\n",
|
159 |
+
")\n",
|
160 |
+
"model.generation_config.pad_token_id = tokenizer.pad_token_id\n",
|
161 |
+
"\n",
|
162 |
+
"# Define LoRA configuration\n",
|
163 |
+
"lora_config = LoraConfig(\n",
|
164 |
+
" r=16, # Rank of LoRA matrices (adjust for memory vs. accuracy)\n",
|
165 |
+
" lora_alpha=32, # Scaling factor\n",
|
166 |
+
" lora_dropout=0.1, # Dropout for regularization\n",
|
167 |
+
" bias=\"none\",\n",
|
168 |
+
" task_type=TaskType.CAUSAL_LM,\n",
|
169 |
+
" target_modules=[\n",
|
170 |
+
" \"q_proj\",\n",
|
171 |
+
" \"k_proj\",\n",
|
172 |
+
" \"v_proj\",\n",
|
173 |
+
" \"o_proj\"\n",
|
174 |
+
" ]\n",
|
175 |
+
")\n",
|
176 |
+
"\n",
|
177 |
+
"# Wrap model with LoRA adapters\n",
|
178 |
+
"model = get_peft_model(model, lora_config)\n",
|
179 |
+
"model = model.to(device)\n",
|
180 |
+
"model.print_trainable_parameters() # Show trainable parameters count"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "markdown",
|
185 |
+
"metadata": {},
|
186 |
+
"source": [
|
187 |
+
"## Define prompt for model"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 3,
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": [
|
196 |
+
"input_prompt = \"\"\"You are an AI assistant that converts natural language queries into valid SQLite queries.\n",
|
197 |
+
"Database Schema and Explanations\n",
|
198 |
+
"\n",
|
199 |
+
"team Table\n",
|
200 |
+
"Stores information about NBA teams.\n",
|
201 |
+
"CREATE TABLE IF NOT EXISTS \"team\" (\n",
|
202 |
+
" \"id\" TEXT PRIMARY KEY, -- Unique identifier for the team\n",
|
203 |
+
" \"full_name\" TEXT, -- Full official name of the team (e.g., \"Los Angeles Lakers\")\n",
|
204 |
+
" \"abbreviation\" TEXT, -- Shortened team name (e.g., \"LAL\")\n",
|
205 |
+
" \"nickname\" TEXT, -- Commonly used nickname for the team (e.g., \"Lakers\")\n",
|
206 |
+
" \"city\" TEXT, -- City where the team is based\n",
|
207 |
+
" \"state\" TEXT, -- State where the team is located\n",
|
208 |
+
" \"year_founded\" REAL -- Year the team was established\n",
|
209 |
+
");\n",
|
210 |
+
"\n",
|
211 |
+
"game Table\n",
|
212 |
+
"Contains detailed statistics for each NBA game, including home and away team performance.\n",
|
213 |
+
"CREATE TABLE IF NOT EXISTS \"game\" (\n",
|
214 |
+
" \"season_id\" TEXT, -- Season identifier, formatted as \"2YYYY\" (e.g., \"21970\" for the 1970 season)\n",
|
215 |
+
" \"team_id_home\" TEXT, -- ID of the home team (matches \"id\" in team table)\n",
|
216 |
+
" \"team_abbreviation_home\" TEXT, -- Abbreviation of the home team\n",
|
217 |
+
" \"team_name_home\" TEXT, -- Full name of the home team\n",
|
218 |
+
" \"game_id\" TEXT PRIMARY KEY, -- Unique identifier for the game\n",
|
219 |
+
" \"game_date\" TIMESTAMP, -- Date the game was played (YYYY-MM-DD format)\n",
|
220 |
+
" \"matchup_home\" TEXT, -- Matchup details including opponent (e.g., \"LAL vs. BOS\")\n",
|
221 |
+
" \"wl_home\" TEXT, -- \"W\" if the home team won, \"L\" if they lost\n",
|
222 |
+
" \"min\" INTEGER, -- Total minutes played in the game\n",
|
223 |
+
" \"fgm_home\" REAL, -- Field goals made by the home team\n",
|
224 |
+
" \"fga_home\" REAL, -- Field goals attempted by the home team\n",
|
225 |
+
" \"fg_pct_home\" REAL, -- Field goal percentage of the home team\n",
|
226 |
+
" \"fg3m_home\" REAL, -- Three-point field goals made by the home team\n",
|
227 |
+
" \"fg3a_home\" REAL, -- Three-point attempts by the home team\n",
|
228 |
+
" \"fg3_pct_home\" REAL, -- Three-point field goal percentage of the home team\n",
|
229 |
+
" \"ftm_home\" REAL, -- Free throws made by the home team\n",
|
230 |
+
" \"fta_home\" REAL, -- Free throws attempted by the home team\n",
|
231 |
+
" \"ft_pct_home\" REAL, -- Free throw percentage of the home team\n",
|
232 |
+
" \"oreb_home\" REAL, -- Offensive rebounds by the home team\n",
|
233 |
+
" \"dreb_home\" REAL, -- Defensive rebounds by the home team\n",
|
234 |
+
" \"reb_home\" REAL, -- Total rebounds by the home team\n",
|
235 |
+
" \"ast_home\" REAL, -- Assists by the home team\n",
|
236 |
+
" \"stl_home\" REAL, -- Steals by the home team\n",
|
237 |
+
" \"blk_home\" REAL, -- Blocks by the home team\n",
|
238 |
+
" \"tov_home\" REAL, -- Turnovers by the home team\n",
|
239 |
+
" \"pf_home\" REAL, -- Personal fouls by the home team\n",
|
240 |
+
" \"pts_home\" REAL, -- Total points scored by the home team\n",
|
241 |
+
" \"plus_minus_home\" INTEGER, -- Plus/minus rating for the home team\n",
|
242 |
+
" \"video_available_home\" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)\n",
|
243 |
+
" \"team_id_away\" TEXT, -- ID of the away team\n",
|
244 |
+
" \"team_abbreviation_away\" TEXT, -- Abbreviation of the away team\n",
|
245 |
+
" \"team_name_away\" TEXT, -- Full name of the away team\n",
|
246 |
+
" \"matchup_away\" TEXT, -- Matchup details from the away team’s perspective\n",
|
247 |
+
" \"wl_away\" TEXT, -- \"W\" if the away team won, \"L\" if they lost\n",
|
248 |
+
" \"fgm_away\" REAL, -- Field goals made by the away team\n",
|
249 |
+
" \"fga_away\" REAL, -- Field goals attempted by the away team\n",
|
250 |
+
" \"fg_pct_away\" REAL, -- Field goal percentage of the away team\n",
|
251 |
+
" \"fg3m_away\" REAL, -- Three-point field goals made by the away team\n",
|
252 |
+
" \"fg3a_away\" REAL, -- Three-point attempts by the away team\n",
|
253 |
+
" \"fg3_pct_away\" REAL, -- Three-point field goal percentage of the away team\n",
|
254 |
+
" \"ftm_away\" REAL, -- Free throws made by the away team\n",
|
255 |
+
" \"fta_away\" REAL, -- Free throws attempted by the away team\n",
|
256 |
+
" \"ft_pct_away\" REAL, -- Free throw percentage of the away team\n",
|
257 |
+
" \"oreb_away\" REAL, -- Offensive rebounds by the away team\n",
|
258 |
+
" \"dreb_away\" REAL, -- Defensive rebounds by the away team\n",
|
259 |
+
" \"reb_away\" REAL, -- Total rebounds by the away team\n",
|
260 |
+
" \"ast_away\" REAL, -- Assists by the away team\n",
|
261 |
+
" \"stl_away\" REAL, -- Steals by the away team\n",
|
262 |
+
" \"blk_away\" REAL, -- Blocks by the away team\n",
|
263 |
+
" \"tov_away\" REAL, -- Turnovers by the away team\n",
|
264 |
+
" \"pf_away\" REAL, -- Personal fouls by the away team\n",
|
265 |
+
" \"pts_away\" REAL, -- Total points scored by the away team\n",
|
266 |
+
" \"plus_minus_away\" INTEGER, -- Plus/minus rating for the away team\n",
|
267 |
+
" \"video_available_away\" INTEGER, -- Indicates whether video is available (1 = Yes, 0 = No)\n",
|
268 |
+
" \"season_type\" TEXT -- Regular season or playoffs\n",
|
269 |
+
");\n",
|
270 |
+
"\n",
|
271 |
+
"other_stats Table\n",
|
272 |
+
"Stores additional statistics, linked to the game table via game_id.\n",
|
273 |
+
"CREATE TABLE IF NOT EXISTS \"other_stats\" (\n",
|
274 |
+
" \"game_id\" TEXT, -- Unique game identifier, matches id column from game table\n",
|
275 |
+
" \"league_id\" TEXT, -- League identifier\n",
|
276 |
+
" \"team_id_home\" TEXT, -- Home team identifier\n",
|
277 |
+
" \"team_abbreviation_home\" TEXT, -- Home team abbreviation\n",
|
278 |
+
" \"team_city_home\" TEXT, -- Home team city\n",
|
279 |
+
" \"pts_paint_home\" INTEGER, -- Points in the paint by the home team\n",
|
280 |
+
" \"pts_2nd_chance_home\" INTEGER, -- Second chance points by the home team\n",
|
281 |
+
" \"pts_fb_home\" INTEGER, -- Fast break points by the home team\n",
|
282 |
+
" \"largest_lead_home\" INTEGER,-- Largest lead by the home team\n",
|
283 |
+
" \"lead_changes\" INTEGER, -- Number of lead changes \n",
|
284 |
+
" \"times_tied\" INTEGER, -- Number of times the score was tied\n",
|
285 |
+
" \"team_turnovers_home\" INTEGER, -- Home team turnovers\n",
|
286 |
+
" \"total_turnovers_home\" INTEGER, -- Total turnovers by the home team\n",
|
287 |
+
" \"team_rebounds_home\" INTEGER, -- Home team rebounds\n",
|
288 |
+
" \"pts_off_to_home\" INTEGER, -- Points off turnovers by the home team\n",
|
289 |
+
" \"team_id_away\" TEXT, -- Away team identifier\n",
|
290 |
+
" \"team_abbreviation_away\" TEXT, -- Away team abbreviation\n",
|
291 |
+
" \"pts_paint_away\" INTEGER, -- Points in the paint by the away team\n",
|
292 |
+
" \"pts_2nd_chance_away\" INTEGER, -- Second chance points by the away team\n",
|
293 |
+
" \"pts_fb_away\" INTEGER, -- Fast break points by the away team\n",
|
294 |
+
" \"largest_lead_away\" INTEGER,-- Largest lead by the away team\n",
|
295 |
+
" \"team_turnovers_away\" INTEGER, -- Away team turnovers\n",
|
296 |
+
" \"total_turnovers_away\" INTEGER, -- Total turnovers by the away team\n",
|
297 |
+
" \"team_rebounds_away\" INTEGER, -- Away team rebounds\n",
|
298 |
+
" \"pts_off_to_away\" INTEGER -- Points off turnovers by the away team\n",
|
299 |
+
");\n",
|
300 |
+
"\n",
|
301 |
+
"\n",
|
302 |
+
"Team Name Information\n",
|
303 |
+
"In the plaintext user questions, only the full team names will be used, but in the queries you may use the full team names or the abbreviations. \n",
|
304 |
+
"The full team names can be used with the game table, while the abbreviations should be used with the other_stats table.\n",
|
305 |
+
"Notice they are separated by the | character in the following list:\n",
|
306 |
+
"\n",
|
307 |
+
"Atlanta Hawks|ATL\n",
|
308 |
+
"Boston Celtics|BOS\n",
|
309 |
+
"Cleveland Cavaliers|CLE\n",
|
310 |
+
"New Orleans Pelicans|NOP\n",
|
311 |
+
"Chicago Bulls|CHI\n",
|
312 |
+
"Dallas Mavericks|DAL\n",
|
313 |
+
"Denver Nuggets|DEN\n",
|
314 |
+
"Golden State Warriors|GSW\n",
|
315 |
+
"Houston Rockets|HOU\n",
|
316 |
+
"Los Angeles Clippers|LAC\n",
|
317 |
+
"Los Angeles Lakers|LAL\n",
|
318 |
+
"Miami Heat|MIA\n",
|
319 |
+
"Milwaukee Bucks|MIL\n",
|
320 |
+
"Minnesota Timberwolves|MIN\n",
|
321 |
+
"Brooklyn Nets|BKN\n",
|
322 |
+
"New York Knicks|NYK\n",
|
323 |
+
"Orlando Magic|ORL\n",
|
324 |
+
"Indiana Pacers|IND\n",
|
325 |
+
"Philadelphia 76ers|PHI\n",
|
326 |
+
"Phoenix Suns|PHX\n",
|
327 |
+
"Portland Trail Blazers|POR\n",
|
328 |
+
"Sacramento Kings|SAC\n",
|
329 |
+
"San Antonio Spurs|SAS\n",
|
330 |
+
"Oklahoma City Thunder|OKC\n",
|
331 |
+
"Toronto Raptors|TOR\n",
|
332 |
+
"Utah Jazz|UTA\n",
|
333 |
+
"Memphis Grizzlies|MEM\n",
|
334 |
+
"Washington Wizards|WAS\n",
|
335 |
+
"Detroit Pistons|DET\n",
|
336 |
+
"Charlotte Hornets|CHA\n",
|
337 |
+
"\n",
|
338 |
+
"Query Guidelines\n",
|
339 |
+
"Use team_name_home and team_name_away to match teams to the game table. Use team_abbreviation_home and team_abbreviation away to match teams to the other_stats table.\n",
|
340 |
+
"\n",
|
341 |
+
"To filter by season, use season_id = '2YYYY'.\n",
|
342 |
+
"\n",
|
343 |
+
"Example: To get statistics from 2005, use a statement like: season_id = '22005'. To get statistics from 1972, use a statement like: season_id = \"21972\". To get statistics from 2015, use a statement like: season_id = \"22015\".\n",
|
344 |
+
"\n",
|
345 |
+
"Ensure queries return relevant columns and avoid unnecessary joins.\n",
|
346 |
+
"\n",
|
347 |
+
"Example User Requests and SQLite Queries\n",
|
348 |
+
"Request:\n",
|
349 |
+
"\"What is the most points the Los Angeles Lakers have ever scored at home?\"\n",
|
350 |
+
"SQLite:\n",
|
351 |
+
"SELECT MAX(pts_home) \n",
|
352 |
+
"FROM game \n",
|
353 |
+
"WHERE team_name_home = 'Los Angeles Lakers';\n",
|
354 |
+
"\n",
|
355 |
+
"Request:\n",
|
356 |
+
"\"Which teams are located in the state of California?\"\n",
|
357 |
+
"SQLite:\n",
|
358 |
+
"SELECT full_name FROM team WHERE state = 'California';\n",
|
359 |
+
"\n",
|
360 |
+
"Request:\n",
|
361 |
+
"\"Which team had the highest number of team turnovers in an away game?\"\n",
|
362 |
+
"SQLite:\n",
|
363 |
+
"SELECT team_abbreviation_away FROM other_stats ORDER BY team_turnovers_away DESC LIMIT 1;\n",
|
364 |
+
"\n",
|
365 |
+
"Request:\n",
|
366 |
+
"\"Which teams were founded before 1979?\"\n",
|
367 |
+
"SQLite:\n",
|
368 |
+
"SELECT full_name FROM team WHERE year_founded < 1979;\n",
|
369 |
+
"\n",
|
370 |
+
"Request:\n",
|
371 |
+
"\"Find the Boston Celtics largest home victory margin in the 2008 season.\"\n",
|
372 |
+
"SQLite:\n",
|
373 |
+
"SELECT MAX(pts_home - pts_away) AS biggest_win\n",
|
374 |
+
"FROM game\n",
|
375 |
+
"WHERE team_name_home = 'Boston Celtics' AND season_id = '22008';\n",
|
376 |
+
"\n",
|
377 |
+
"Generate only the SQLite query prefaced by SQLite: and no other text, do not output an explanation of the query. Now generate an SQLite query for the following user request. Request:\n",
|
378 |
+
"\"\"\""
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "markdown",
|
383 |
+
"metadata": {},
|
384 |
+
"source": [
|
385 |
+
"## Setup model trainer"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 4,
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [
|
393 |
+
{
|
394 |
+
"name": "stderr",
|
395 |
+
"output_type": "stream",
|
396 |
+
"text": [
|
397 |
+
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\training_args.py:1611: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
|
398 |
+
" warnings.warn(\n",
|
399 |
+
"C:\\Users\\Dean\\AppData\\Local\\Temp\\ipykernel_12256\\3557190339.py:17: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
|
400 |
+
" trainer = Trainer(\n",
|
401 |
+
"No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.\n"
|
402 |
+
]
|
403 |
+
}
|
404 |
+
],
|
405 |
+
"source": [
|
406 |
+
"training_args = TrainingArguments(\n",
|
407 |
+
" output_dir=\"./fine-tuned-model\",\n",
|
408 |
+
" evaluation_strategy=\"epoch\", # Evaluate at the end of each epoch\n",
|
409 |
+
" save_strategy=\"epoch\", # Save model every epoch\n",
|
410 |
+
" per_device_train_batch_size=8, # LoRA allows higher batch size\n",
|
411 |
+
" per_device_eval_batch_size=8,\n",
|
412 |
+
" num_train_epochs=3, # Increase if needed\n",
|
413 |
+
" learning_rate=5e-4, # Higher LR since we're only training LoRA layers\n",
|
414 |
+
" weight_decay=0.01,\n",
|
415 |
+
" logging_steps=50, # Print loss every 50 steps\n",
|
416 |
+
" save_total_limit=2, # Keep last 2 checkpoints\n",
|
417 |
+
" fp16=True if torch.cuda.is_available() else False,\n",
|
418 |
+
" push_to_hub=False\n",
|
419 |
+
")\n",
|
420 |
+
"\n",
|
421 |
+
"# Trainer setup\n",
|
422 |
+
"trainer = Trainer(\n",
|
423 |
+
" model=model,\n",
|
424 |
+
" args=training_args,\n",
|
425 |
+
" train_dataset=train_dataset,\n",
|
426 |
+
" eval_dataset=val_dataset,\n",
|
427 |
+
" tokenizer=tokenizer\n",
|
428 |
+
")"
|
429 |
+
]
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"cell_type": "markdown",
|
433 |
+
"metadata": {},
|
434 |
+
"source": [
|
435 |
+
"## Run fine-tuning and save model weights when complete"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": 5,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [
|
443 |
+
{
|
444 |
+
"name": "stderr",
|
445 |
+
"output_type": "stream",
|
446 |
+
"text": [
|
447 |
+
"c:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\integrations\\sdpa_attention.py:54: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\aten\\src\\ATen\\native\\transformers\\cuda\\sdp_utils.cpp:555.)\n",
|
448 |
+
" attn_output = torch.nn.functional.scaled_dot_product_attention(\n"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"data": {
|
453 |
+
"text/html": [
|
454 |
+
"\n",
|
455 |
+
" <div>\n",
|
456 |
+
" \n",
|
457 |
+
" <progress value='6' max='354' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
458 |
+
" [ 6/354 00:03 < 05:16, 1.10 it/s, Epoch 0.04/3]\n",
|
459 |
+
" </div>\n",
|
460 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
461 |
+
" <thead>\n",
|
462 |
+
" <tr style=\"text-align: left;\">\n",
|
463 |
+
" <th>Epoch</th>\n",
|
464 |
+
" <th>Training Loss</th>\n",
|
465 |
+
" <th>Validation Loss</th>\n",
|
466 |
+
" </tr>\n",
|
467 |
+
" </thead>\n",
|
468 |
+
" <tbody>\n",
|
469 |
+
" </tbody>\n",
|
470 |
+
"</table><p>"
|
471 |
+
],
|
472 |
+
"text/plain": [
|
473 |
+
"<IPython.core.display.HTML object>"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
"metadata": {},
|
477 |
+
"output_type": "display_data"
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"ename": "KeyboardInterrupt",
|
481 |
+
"evalue": "",
|
482 |
+
"output_type": "error",
|
483 |
+
"traceback": [
|
484 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
485 |
+
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
486 |
+
"Cell \u001b[1;32mIn[5], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Run training\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;66;03m# Save model and tokenizer weights\u001b[39;00m\n\u001b[0;32m 5\u001b[0m model\u001b[38;5;241m.\u001b[39msave_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m./fine-tuned-model\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
487 |
+
"File \u001b[1;32mc:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\trainer.py:2245\u001b[0m, in \u001b[0;36mTrainer.train\u001b[1;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[0;32m 2243\u001b[0m hf_hub_utils\u001b[38;5;241m.\u001b[39menable_progress_bars()\n\u001b[0;32m 2244\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 2245\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43minner_training_loop\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2246\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2247\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mresume_from_checkpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2248\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrial\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2249\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_keys_for_eval\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2250\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
488 |
+
"File \u001b[1;32mc:\\Users\\Dean\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\trainer.py:2561\u001b[0m, in \u001b[0;36mTrainer._inner_training_loop\u001b[1;34m(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)\u001b[0m\n\u001b[0;32m 2555\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m context():\n\u001b[0;32m 2556\u001b[0m tr_loss_step \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining_step(model, inputs, num_items_in_batch)\n\u001b[0;32m 2558\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[0;32m 2559\u001b[0m args\u001b[38;5;241m.\u001b[39mlogging_nan_inf_filter\n\u001b[0;32m 2560\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_torch_xla_available()\n\u001b[1;32m-> 2561\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m (torch\u001b[38;5;241m.\u001b[39misnan(tr_loss_step) \u001b[38;5;129;01mor\u001b[39;00m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misinf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtr_loss_step\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 2562\u001b[0m ):\n\u001b[0;32m 2563\u001b[0m \u001b[38;5;66;03m# if loss is nan or inf simply add the average of previous logged losses\u001b[39;00m\n\u001b[0;32m 2564\u001b[0m tr_loss \u001b[38;5;241m=\u001b[39m tr_loss \u001b[38;5;241m+\u001b[39m tr_loss \u001b[38;5;241m/\u001b[39m (\u001b[38;5;241m1\u001b[39m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mglobal_step \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_globalstep_last_logged)\n\u001b[0;32m 2565\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
489 |
+
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
490 |
+
]
|
491 |
+
}
|
492 |
+
],
|
493 |
+
"source": [
|
494 |
+
"# Run training\n",
|
495 |
+
"trainer.train()\n",
|
496 |
+
"\n",
|
497 |
+
"# Save model and tokenizer weights\n",
|
498 |
+
"model.save_pretrained(\"./fine-tuned-model\")\n",
|
499 |
+
"tokenizer.save_pretrained(\"./fine-tuned-model\")"
|
500 |
+
]
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"metadata": {
|
504 |
+
"kernelspec": {
|
505 |
+
"display_name": "Python 3",
|
506 |
+
"language": "python",
|
507 |
+
"name": "python3"
|
508 |
+
},
|
509 |
+
"language_info": {
|
510 |
+
"codemirror_mode": {
|
511 |
+
"name": "ipython",
|
512 |
+
"version": 3
|
513 |
+
},
|
514 |
+
"file_extension": ".py",
|
515 |
+
"mimetype": "text/x-python",
|
516 |
+
"name": "python",
|
517 |
+
"nbconvert_exporter": "python",
|
518 |
+
"pygments_lexer": "ipython3",
|
519 |
+
"version": "3.12.6"
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"nbformat": 4,
|
523 |
+
"nbformat_minor": 2
|
524 |
+
}
|