wav2vec2-large-mms-1b-dzo-colab
This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4692
- Wer: 0.4020
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.8364 | 1.0 | 13 | 1.7411 | 0.8907 |
1.8276 | 2.0 | 26 | 1.5980 | 0.8391 |
1.6815 | 3.0 | 39 | 1.4269 | 0.7822 |
1.4402 | 4.0 | 52 | 1.2306 | 0.7050 |
1.3527 | 5.0 | 65 | 1.0515 | 0.6605 |
1.1983 | 6.0 | 78 | 0.8829 | 0.5821 |
0.99 | 7.0 | 91 | 0.7602 | 0.5550 |
0.9221 | 8.0 | 104 | 0.6441 | 0.4770 |
0.8035 | 9.0 | 117 | 0.5535 | 0.4503 |
0.6713 | 10.0 | 130 | 0.4692 | 0.4020 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Udap10/wav2vec2-large-mms-1b-dzo-colab
Base model
facebook/mms-1b-all