File size: 2,097 Bytes
462994c 7dcfbc1 462994c 7dcfbc1 f34b3d7 462994c f34b3d7 462994c f34b3d7 7dcfbc1 462994c 7dcfbc1 f34b3d7 462994c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-dzo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-dzo-colab
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4692
- Wer: 0.4020
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.8364 | 1.0 | 13 | 1.7411 | 0.8907 |
| 1.8276 | 2.0 | 26 | 1.5980 | 0.8391 |
| 1.6815 | 3.0 | 39 | 1.4269 | 0.7822 |
| 1.4402 | 4.0 | 52 | 1.2306 | 0.7050 |
| 1.3527 | 5.0 | 65 | 1.0515 | 0.6605 |
| 1.1983 | 6.0 | 78 | 0.8829 | 0.5821 |
| 0.99 | 7.0 | 91 | 0.7602 | 0.5550 |
| 0.9221 | 8.0 | 104 | 0.6441 | 0.4770 |
| 0.8035 | 9.0 | 117 | 0.5535 | 0.4503 |
| 0.6713 | 10.0 | 130 | 0.4692 | 0.4020 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|