|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- timdettmers/openassistant-guanaco |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
## Anacondia |
|
Anacondia-70m is a Pythia-70m-deduped model fine-tuned with QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) |
|
|
|
## Usage |
|
Anacondia is not intended for any downstream usage and was trained for educational purposes. Please consider more serious models for inference if this doesn't fall into your usage aim. |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0 |
|
|
|
## Inference |
|
|
|
```python |
|
|
|
#import necessary modules |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "UncleanCode/anacondia-70m" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
input= tokenizer("This is a sentence ",return_tensors="pt") |
|
output= model.generate(**input) |
|
|
|
tokenizer.decode(output[0]) |
|
|
|
``` |