wav2vec2-russian / README.md
Alikhan Urumov
update model card README.md
45e8a37
|
raw
history blame
4.27 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-russian
    results: []

wav2vec2-russian

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2210
  • Wer: 0.4966

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.0548 0.25 500 4.1857 0.9999
3.0204 0.5 1000 1.9996 0.9998
1.8692 0.74 1500 1.6426 0.8698
1.5154 0.99 2000 1.6156 0.7481
1.3677 1.24 2500 2.1281 0.7120
1.3223 1.49 3000 1.5192 0.6846
1.2512 1.73 3500 1.0993 0.6634
1.2257 1.98 4000 1.1039 0.6493
1.1418 2.23 4500 1.0170 0.6241
1.1213 2.48 5000 0.8436 0.6191
1.112 2.73 5500 0.7326 0.6102
1.0912 2.97 6000 0.7054 0.5976
1.0465 3.22 6500 1.0887 0.5941
1.0215 3.47 7000 1.4577 0.5793
1.0244 3.72 7500 1.6058 0.5855
1.0254 3.96 8000 1.3366 0.5750
0.9558 4.21 8500 0.8088 0.5644
0.966 4.46 9000 0.9650 0.5636
0.9674 4.71 9500 0.9047 0.5532
0.9373 4.96 10000 1.0342 0.5422
0.9126 5.2 10500 1.2346 0.5462
0.9063 5.45 11000 1.2696 0.5412
0.9126 5.7 11500 1.4693 0.5317
0.8936 5.95 12000 1.9096 0.5369
0.8621 6.19 12500 1.6382 0.5326
0.8695 6.44 13000 0.9466 0.5252
0.8423 6.69 13500 1.6286 0.5355
0.8494 6.94 14000 0.8368 0.5264
0.8354 7.19 14500 0.6893 0.5216
0.8133 7.43 15000 0.5916 0.5175
0.8147 7.68 15500 0.7813 0.5221
0.8258 7.93 16000 1.3814 0.5129
0.8079 8.18 16500 0.8368 0.5176
0.7868 8.42 17000 0.9456 0.5159
0.7955 8.67 17500 0.7412 0.5170
0.7921 8.92 18000 0.6256 0.5066
0.7536 9.17 18500 0.8792 0.5101
0.7667 9.42 19000 1.0615 0.5032
0.772 9.66 19500 1.1312 0.5086
0.7418 9.91 20000 1.3485 0.4990
0.7577 10.16 20500 1.0788 0.5037
0.7311 10.41 21000 0.9978 0.5032
0.7419 10.65 21500 1.3925 0.5017
0.74 10.9 22000 1.4191 0.4981
0.7297 11.15 22500 1.1082 0.4994
0.737 11.4 23000 1.1208 0.4971
0.7266 11.65 23500 1.1595 0.4952
0.7091 11.89 24000 1.2210 0.4966

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6