Ussen's picture
update model card README.md
e53f06d
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - Ussen/swc-drc-kat
metrics:
  - wer
model-index:
  - name: whisper-medium-swc-drc-kat-1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Ussen/swc-drc-kat
          type: Ussen/swc-drc-kat
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.49379203310915676

whisper-medium-swc-drc-kat-1

This model is a fine-tuned version of openai/whisper-tiny on the Ussen/swc-drc-kat dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9701
  • Wer Ortho: 50.0388
  • Wer: 0.4938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.6769 2.96 1000 0.8341 51.2296 0.5072
0.365 5.93 2000 0.8083 49.3917 0.4876
0.165 8.89 3000 0.8806 51.3073 0.5067
0.059 11.85 4000 0.9701 50.0388 0.4938

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.3
  • Tokenizers 0.13.3