|
--- |
|
license: cc-by-nc-4.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: CohereForAI/c4ai-command-r-v01-4bit |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: c4ai-command-r-v01-SFT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# c4ai-command-r-v01-SFT |
|
|
|
This model is a fine-tuned version of [CohereForAI/c4ai-command-r-v01-4bit](https://huggingface.co/CohereForAI/c4ai-command-r-v01-4bit) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6709 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 1.5906 | 0.2326 | 10 | 1.5675 | |
|
| 1.5542 | 0.4651 | 20 | 1.4713 | |
|
| 1.3934 | 0.6977 | 30 | 1.3839 | |
|
| 1.346 | 0.9302 | 40 | 1.2949 | |
|
| 1.2605 | 1.1628 | 50 | 1.2154 | |
|
| 1.1887 | 1.3953 | 60 | 1.1361 | |
|
| 1.0784 | 1.6279 | 70 | 1.0520 | |
|
| 1.0086 | 1.8605 | 80 | 0.9770 | |
|
| 0.9247 | 2.0930 | 90 | 0.9134 | |
|
| 0.8671 | 2.3256 | 100 | 0.8640 | |
|
| 0.8391 | 2.5581 | 110 | 0.8284 | |
|
| 0.7849 | 2.7907 | 120 | 0.8026 | |
|
| 0.7458 | 3.0233 | 130 | 0.7818 | |
|
| 0.7377 | 3.2558 | 140 | 0.7684 | |
|
| 0.7112 | 3.4884 | 150 | 0.7544 | |
|
| 0.7054 | 3.7209 | 160 | 0.7430 | |
|
| 0.7029 | 3.9535 | 170 | 0.7331 | |
|
| 0.657 | 4.1860 | 180 | 0.7263 | |
|
| 0.675 | 4.4186 | 190 | 0.7189 | |
|
| 0.6695 | 4.6512 | 200 | 0.7117 | |
|
| 0.6418 | 4.8837 | 210 | 0.7058 | |
|
| 0.6348 | 5.1163 | 220 | 0.7028 | |
|
| 0.6414 | 5.3488 | 230 | 0.6981 | |
|
| 0.612 | 5.5814 | 240 | 0.6951 | |
|
| 0.6114 | 5.8140 | 250 | 0.6909 | |
|
| 0.6149 | 6.0465 | 260 | 0.6876 | |
|
| 0.5978 | 6.2791 | 270 | 0.6884 | |
|
| 0.5955 | 6.5116 | 280 | 0.6839 | |
|
| 0.6112 | 6.7442 | 290 | 0.6802 | |
|
| 0.5841 | 6.9767 | 300 | 0.6794 | |
|
| 0.5746 | 7.2093 | 310 | 0.6801 | |
|
| 0.5849 | 7.4419 | 320 | 0.6773 | |
|
| 0.5863 | 7.6744 | 330 | 0.6760 | |
|
| 0.5738 | 7.9070 | 340 | 0.6748 | |
|
| 0.5696 | 8.1395 | 350 | 0.6739 | |
|
| 0.5632 | 8.3721 | 360 | 0.6747 | |
|
| 0.5732 | 8.6047 | 370 | 0.6737 | |
|
| 0.5512 | 8.8372 | 380 | 0.6725 | |
|
| 0.5761 | 9.0698 | 390 | 0.6716 | |
|
| 0.5471 | 9.3023 | 400 | 0.6727 | |
|
| 0.5579 | 9.5349 | 410 | 0.6724 | |
|
| 0.573 | 9.7674 | 420 | 0.6714 | |
|
| 0.5459 | 10.0 | 430 | 0.6708 | |
|
| 0.5677 | 10.2326 | 440 | 0.6710 | |
|
| 0.5453 | 10.4651 | 450 | 0.6708 | |
|
| 0.5638 | 10.6977 | 460 | 0.6708 | |
|
| 0.5473 | 10.9302 | 470 | 0.6709 | |
|
| 0.5553 | 11.1628 | 480 | 0.6709 | |
|
| 0.5535 | 11.3953 | 490 | 0.6708 | |
|
| 0.5409 | 11.6279 | 500 | 0.6709 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.1.dev0 |
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.0 |